
	
	

	

	

	

											
	
	
								

	
CPPDEPEND	GRAPHS	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

		

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 2	/	19	

Table	of	contents	
1. Introduction	...	3

2. Dependency	graph	...	4

3. Call	graph	..	6

4. Class	inheritance	graph	..	8

5. Coupling	graph	...	10

6. Path	graph	..	13

7. All	Paths	graph	...	15

8. Cycle	graph	...	17

9. Large	graph	visualized	with	Dependency	Structure	Matrix	..	19

	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 3	/	19	

1. Introduction	

CppDepend capabilities to help user exploring an existing Code Architecture are endless.
In this document you'll learn how to benefit from these features in order to achieve most
popular Code Exploration scenarios:

Dependency Graph

Call Graph

Coupling Graph

All Paths Graph

Cycle Graph

Large Graph visualized with
Dependency Structure Matrix

Path Graph

Class Inheritance Graph

	

	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 4	/	19	

2. Dependency	graph	

By default, the CppDepend dependency graph panel displays the graph of dependencies
between C\C++ projects:

In the Solution Explorer right-click menu, CppDepend proposes to explore the graph of
dependencies between namespaces.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 5	/	19	

In the Solution Explorer (or Code Editor window) right-click menu, CppDepend proposes
to explore the graph of dependencies between types of a namespace. Notice that
CppDepend comes with an heuristic to try to infer a namespace from a folder in Solution
Explorer.

In the Solution Explorer (or Code Editor window) right-click menu, CppDepend proposes
to explore the graph of dependencies between members (methods + fields) of a type.
Notice that CppDepend comes with an heuristic to try to infer a type from a source file in
Solution Explorer.

	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 6	/	19	

3. Call	graph	

CppDepend can generate any call graph you might need with a two steps procedure.

First: Ask for direct and indirect callers/callees of a type, a field, a method, a namespace
or an assembly. The effect is that the following CQLinq query is generated to match all
callers or callees asked.

from m in Types.WithFullNameNotIn("IronRuby.StandardLibrary.Yaml.Nod
e").ChildMethods()
let depth0 = m.DepthOfIsUsing("IronRuby.StandardLibrary.Yaml.Node")
where depth0 >= 0 orderby depth0
select new { m, depth0 }

Notice that, in the CQLinq query result,

The metric DepthOfIsUsing/DepthOfIsUsedBy shows depth of usage (1 means direct, 2
means using a direct user etc...). The CQLinq query can easily be modified to only match
indirect callers/callees with a certain condition on depth of usage.

Notice also that callers/callees asked are not necessarily of the same kind of the
concerned code element. For example here we ask for methods that are using directly or
indirectly a type.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 7	/	19	

Second: Once the CQLinq query matches the set of callers/callees that the user wishes,
the set of matches result can be exported to the Dependency Graph. This has for effect
to show the call graph wished.

	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 8	/	19	

4. Class	inheritance	graph	

To display a Class of Inheritance Graph, the same two steps procedure shown in the
precedent section (on generating a Call Graph) must be applied.

First: Generate a CQLinq query asking for the set of classes that inherits from a
particular class (or that implement a particular interface). Here, the following CQLinq
query is generated:

from t in Types
let depth0 = t.DepthOfDeriveFrom("Microsoft.Scripting.Interpreter.Loc
alAccessInstruction")
where depth0 >= 0 orderby depth0
select new { t, depth0 }

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 9	/	19	

Second: Export the result of the CQLinq query to the Dependency Graph to show the
inheritance graph wished.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 10	/	19	

5. Coupling	graph	

It might be needed to know which code elements exactly are involved in a particular
dependency. Especially when one needs to anticipate the impact of a structural change.
In the screenshoot below, the CppDepend Info panel describes a coupling between 2
assemblies.

From pointing a cell in the dependency matrix, it says that X types of an assembly A are
using Y types of an assembly B. Notice that you can change the option Weight on
Cell to # methods, # members or # namespaces, if you need to know the coupling with
something else than types.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 11	/	19	

Just left clicking the matrix cell shows the coupling graph below.

A coupling graph can also be generated from an edge in the dependency graph. Here,
you can adjust the option Edge Thickness to something else than # type.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 12	/	19	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 13	/	19	

6. Path	graph	

If you wish to dig into a path or a dependency cycle between 2 code elements, the first
thing to do is to show the dependency matrix with the option Weight on Cells: Direct &
indirect depth of use.

Matrix blue and green cells will represent paths while black cells will
represent dependency cycles. For example, here, the Info panel tells us that there is a
path of minimal length 7 between the 2 types involved.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 14	/	19	

Just left clicking the cell shows the path graph below.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 15	/	19	

7. All	Paths	graph	

In certain situations, you'll need to know about all paths from a code element A to a code
element B. For example, here, the Info panel tells us that there is a path of minimal
length 2 between the 2 types involved.

Right clicking the matrix's cell and selecting the option Edit a code query that
matches paths generates the following CQLinq query that matchs all types involved in
all paths from type A to type B.

from t in Types
let depth0 = t.DepthOfIsUsedBy("Microsoft.Scripting.Actions.Calls.Ins
tanceBuilder")
let depth1 = t.DepthOfIsUsing("Microsoft.Scripting.Actions.Calls.Call
FailureReason")
where depth0 <= 2 && depth1 <= 2
orderby depth0, depth1
select new { t, depth0, depth1 }
//---
-
// The type
// public class InstanceBuilder
// - { } Microsoft.Scripting.Actions.Calls
// - Microsoft.Dynamic, v1.0.0.0
//
// is indirectly using
// the type
// public sealed enum CallFailureReason : IComparable, IFormattable
, IConvertible

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 16	/	19	

// - { } Microsoft.Scripting.Actions.Calls
// - Microsoft.Dynamic, v1.0.0.0
//
// with a depth of 2.

Finally exporting to the graph the 12 types matched by the CQLinq query shows all paths
from A to B.

	

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 17	/	19	

8. Cycle	graph	

As we explained in the previous section, to deal with dependency cycle graphs, the first
thing to do is to show the dependency matrix with the option Weight on Cells: Direct &
indirect depth of use. Black cells then represent cycles.

For example, here, the Info panel tells us that there is a dependency cycle of minimal
length 5 between the 2 types involved.

Just left clicking the cell shows the cycle graph below:

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 18	/	19	

We'd like to warn that obtaining a clean 'rounded' dependency cycle as the one shown
above, is actually more an exceptional situation than a rule.
Often, exhibiting a cycle will end up in a not 'rounded' graph as the one shown below. In
this example, the minimal length of a cycle between the 2 types involved (in yellow) is
12. Count the number of edges crossed from one yellow type to the other one, and you'll
get 12. You'll see that some edges will be counted more than once.

	 	 	

	

CppDepend	–	CppDepend	Graphs																			 	 19	/	19	

9. Large	graph	visualized	with	Dependency	Structure	
Matrix	

Here, we'd like to underline the fact that when the dependency Graph becomes
unreadable, it is worth switching to the dependency Matrix.

Both dependency Graph and dependency Matrix co-exist because:

• Dependency Graph is intuitive but becomes unreadable as soon as there are too
many edges between nodes.

• Dependency Matrix requires time to be understood, but once mastered, you'll see
that the Dependency Matrix is much more efficient than the Dependency Graph to
explore an existing architecture.

To illustrate the point, find below the same dependencies between 77 namespaces shown
through Dependency Graph and Dependency Matrix.

	

