
	
	

	

	

	

											
	
	
								

	
SMART	TECHNICAL	DEBT	ESTIMATION	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			2	/	19	

	

Table	of	contents	
1. Introduction	...	3

2. Annual-Interest	and	Severity	..	5

3. Debt	Settings	..	6

4. SQUALE	Debt	Ratio	and	Debt	Rating	..	7

5. Prioritizing	issues	fix	and	the	Breaking-Point	metric	..	9

6. Browsing	the	Technical-Debt	...	11

7. Technical	Debt	and	Quality	Gate	..	16

8. Reasons	why	Technical	Debt	might	be	Zero	or	incomplete	17

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			3	/	19	

1. Introduction	

Nowadays,	 the	 technical-debt	 metaphor	 has	 been	 widely	 adopted	 by	 the	 software	
industry.	It	was	coined	by	Ward	Cunningham	in	1992.	

This	 reference	article	by	Martin	 Fowler	describes	 the	 technical-debt	metaphor	 in	 great	
detail.	To	quote	M.Fowler:	

In	this	metaphor,	doing	things	the	quick	and	dirty	way	sets	us	up	with	a	technical	debt,	
which	is	similar	to	a	financial	debt.	Like	a	financial	debt,	the	technical	debt	incurs	interest	
payments,	 which	 come	 in	 the	 form	 of	 the	 extra	 effort	 that	 we	 have	 to	 do	 in	 future	
development	because	of	 the	quick	and	dirty	design	choice.	We	can	choose	to	continue	
paying	the	interest,	or	we	can	pay	down	the	principal	by	refactoring	the	quick	and	dirty	
design	 into	 the	 better	 design.	 Although	 it	 costs	 to	 pay	 down	 the	 principal,	we	 gain	 by	
reduced	interest	payments	in	the	future.	

Using	CppDepend,	code	rules	can	be	written	through	C#	LINQ	queries.	Applied	on	a	code	
base	a	rule	yields	issues.	A	dedicated	debt	API	is	proposed	to	estimate	both	the	technical-
debt	 and	 the	 annual-interest	 of	 the	 issue	 through	 formulas	 written	 in	 C#.	 Both	 the	
technical-debt	and	annual-interest	of	an	issue	are	measured	in	man-time.	

The	technical-debt	is	the	estimated	man-time	that	would	take	to	fix	the	issue.	

The	 annual-interest	 is	 the	 estimated	 man-time	 consumed	 per	 year	 if	 the	 issue	 is	 left	
unfixed.	This	provides	an	estimate	of	the	business	impact	of	the	issue.	

For	example:	

	

warnif count > 0
from m in Methods
where m.CyclomaticComplexity > 10
select new {
 m,
 m.CyclomaticComplexity,
 Debt = (3*(m.CyclomaticComplexity -10)).ToMinutes().ToDebt(),
 AnnualInterest = (m.PercentageCoverage == 100 ? 10 : 120).ToMinutes().ToAnnu
alInterest()
}

In this example, the rule matches methods which are too complex, the complexity being
measured through the Cyclomatic Complexity code metric. We can see that:

• The technical-debt is proportional to the complexity above a certain threshold.
• The annual-interest is 10 minutes per year if the method is 100% covered by tests,

else it is 2 hours per year.

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			4	/	19	

Leaving	a	complex	method	both	unrefactored	and	uncovered	by	tests	 is	an	error-prone	
situation.	At	best	such	a	situation	impairs	maintainability	of	the	code,	at	worse	it	ends	up	
in	bugs	at	production	time.	The	annual-interest	estimates	the	average	cost	per	year	if	the	
complex	method	 is	 left	unrefactored.	 This	worsens	 if	 the	method	also	 is	 uncovered	by	
tests.	 The	word	average	is	 highlighted	here	 due	 to	 the	 fact	 that,	 for	 example,	 out	 of	 8	
complex	and	untested	methods	maybe	only	one	has	a	bug	that	will	cost	2	days	of	man-
work	(2x8	hours)	to	be	discovered,	investigated,	fixed	and	delivered.	

Each	rule	in	the	set	of	default	rules	contains	formulas	to	compute	the	technical-debt	and	
the	annual-interest	for	each	issue.	Rules	and	formulas	can	be	created	and	customized	to	
better	match	your	teams'	needs	and	habits	since	it	is	only	raw	C#	which	can	be	edited	in	
Visual	 Studio.	 The	 main	 advantage	 is	 that	the	 technical-debt	 estimation	 is	 entirely	
transparent	and	easily	customizable	with	CppDepend.	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			5	/	19	

2. Annual-Interest	and	Severity	

The	 annual-interest	 is	 a	 measure	 of	 an	 issue	 severity.	 The	 severity	 and	 the	 annual-
interest	represent	the	same	concept	where	the	annual-interest	is	a	continuous	measure	
while	the	severity	is	a	discrete	measure.	

CppDepend	defines	5	levels	of	severity,	and	the	severity	of	an	issue	is	estimated	through	
thresholds	based	on	the	annual-interest.	

Low:	An	issue	with	a	Low	severity	level	represents	a	small	improvement,	a	way	to	make	
the	code	look	more	elegant.	Default	Annual	Interest	threshold:	zero	or	less	than	2	man-
minutes	per	year.	

Medium:	An	 issue	with	a	Medium	severity	 level	represents	a	warning	for	an	 issue	that,	
even	 if	 not	 fixed,	 won't	 have	 a	 significant	 impact	 on	 development.	 Default	 Annual	
Interest	threshold:	less	than	20	man-minutes	per	year.	

High:	An	 issue	with	a	High	severity	 level	 should	be	 fixed	quickly,	but	can	wait	until	 the	
next	 scheduled	 interval.	 Default	 Annual	 Interest	 threshold:	 less	 than	 2	man-hours	 per	
year.	

Critical:	An	issue	with	a	Critical	severity	level	should	not	move	to	production.	It	still	can	
for	business	 imperative	needs	purposes,	 but	 at	worth	 it	must	be	 fixed	during	 the	next	
iterations.	Default	Annual	Interest	threshold:	less	than	10	man-hours	per	year.	

Blocker:	 An	 issue	with	 a	 Blocker	 severity	 level	 cannot	move	 to	 production,	 it	must	 be	
fixed.	Default	Annual	Interest	threshold:	more	than	10	man-hours	per	year.	

Notice	 that	 the	 notion	 of	 critical	 issue	 is	 different	 from	 the	 notion	 of	 critical	 rule.	 The	
severity	of	an	issue	is	not	related	to	its	rule	being	critical	or	not.	A	rule	can	be	tagged	as	
critical	 to	enforce	some	constraint	on	 it,	 like	 for	example	a	quality	gate	 that	 fails	upon	
critical	rule	violation	can	be	written.	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			6	/	19	

3. Debt	Settings	

Technical-debt	 computation	 and	 results	 can	 be	 fine-tuned	 through	 the	 settings	 in	 the	
panel	CppDepend	>	Project	Properties	>	Issues	and	Debt.	

	
	
You	can	see:	

• Thresholds	relative	to	issues	severity	and	annual-interest	which	were	explained	in	
the	previous	section.	

• Thresholds	relative	to	SQALE	debt-rating	explained	in	the	next	section	
• Two	multiplicative	factors	that	can	be	applied	to	all	technical-debt	and	annual-

interest	estimated	values.	By	default	these	factors	are	set	to	1.	
• To	make	sure	that	debt	estimations	are	shown	through	meaningful	man-time	

measures,	settings	concerning	the	number	of	work-hours	per	day	or	number	of	
work-days	per	year	can	be	adjusted.	

• There	are	also	settings	to	choose	how	debt	values	are	formatted	and	to	
convert	man-time	debt	values	into	money	cost	debt	values.	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			7	/	19	

4. SQUALE	Debt	Ratio	and	Debt	Rating	

The	SQALE	method	(commonly	pronounced	“scale”)	 is	a	standardized	way	to	assess	the	
technical-debt.	CppDepend	implements	the	Debt	Ratio	and	the	Debt	Rating	that	are	part	
of	the	SQALE	method.	

The	Debt	Ratio	on	a	code	base,	or	on	a	code	element,	is	expressed	in	percentage	of	the	
estimated	technical-debt,	compared	to	the	estimated	effort	it	would	take	to	rewrite	the	
code	 element	 from	 scratch.	 The	 estimated	 effort	 it	 would	 take	 to	 rewrite	 the	 code	
element	 from	scratch	 is	 inferred	from	the	code	element	size	 in	 lines	of	code,	and	from	
the	debt	setting	named	Estimated	number	of	man-days	to	develop	1.000	logical	 lines	of	
code	(see	the	screenshot	in	the	previous	section	about	debt	settings).	

The	 value	 of	 the	Estimated	 number	 of	 man-days	 to	 develop	 1.000	 logical	 lines	 of	
code	setting	is	just	an	estimation	so	in	the	short-term	it	is	meaningless.	After	a	few	man-
months	or	even	man-years	of	development	this	value	is	typically	stable	enough	to	rely	on	
for	estimation	purposes.	This	estimated	setting	also	needs	to	take	into	account	the	cost	
of	writing	unit-tests.	The	default	value	is	18	man-days	which	represents	an	average	of	55	
new	logical	lines	of	code,	100%	covered	by	unit-tests,	written	per	day,	per	developer.	

The	Debt	Rating	of	a	code	base	or	of	a	code	element	is	inferred	from	thresholds	applied	
on	the	Debt	Ratio.	The	Debt	Rating	is	in	the	range A, B, C, D, E. The	four	thresholds	are	
customizable	in	the	debt	settings	panel	(see	the	screenshot	in	the	previous	section	about	
debt	settings).	The	default	thresholds	are:	

• [0,	5%	[of	Debt	Ratio	leads	to	an A debt	rating.	
• [5%,	10%	[of	Debt	Ratio	leads	to	a B debt	rating.	
• [10%,	20%	[of	Debt	Ratio	leads	to	a C debt	rating.
• [20%,	50%	[of	Debt	Ratio	leads	to	a D debt	rating.	
• 50%	or	more	of	Debt	Ratio	lead	to	an E debt	rating.

The	code	base	Debt	Rating	and	Debt	Ratio	values	are	shown	in	the	Dashboard.	In	the	
section	Browsing	the	Technical-Debt	we'll	show	that	simple	C#	code	queries	can	display	
the	Debt	Ratio	and	Rating	values	for	any	code	element.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			8	/	19	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			9	/	19	

5. Prioritizing	 issues	 fix	 and	 the	 Breaking-Point	
metric	

The	Breaking-Point	of	an	issue	or	of	a	set	of	issues,	is	the	time	point	from	now	to	when	
the	estimated	cost-to-fix	 the	 issue(s)	will	 reach	the	estimated	cost	 to	 leave	the	 issue(s)	
unfixed.	

The	 breaking	 point	 is	 the	 debt	 divided	 by	 the	 annual-interest.	 For	 example	 if	 the	
estimated	cost-to-fix	the	debt	is	equal	to	10	man-days	and	the	estimated	annual-interest	
is	equal	to	2	man-days	per	year,	then	the	breaking	point	is	equal	to	5	years	from	now.	

Notice	 that	a	breaking	point	which	 is	 lower	 than	a	year	means	 that	during	 the	next	12	
months,	it	is	estimated	that	it	would	be	cheaper	to	fix	the	debt	than	not	to	fix	it.	

Notice	also	that	a	breaking	point	is	not	measured	through	man-time	like	debt	or	annual-
interest	 (a	man-month	or	a	man-year),	but	 rather	 through	 regular	duration	 (months	or	
years).	Breaking	point	values	are	typed	with	TimeSpan.	

When	 it	 comes	 to	 prioritizing	 issues	 to	 fix	 first,	 the	 issue	 severity	 is	 an	 important	
parameter.	 As	 a	 reminder:	 the	 severity	 is	 the	 discrete	measure	 of	 the	 annual-interest.	
Hence	the	higher	the	annual-interest,	the	more	important	it	is	to	fix.	

However,	given	a	certain	severity	level,	not	all	issues	are	equal.	Some	will	demand	more	
effort	 to	 fix.	 This	 is	 estimated	 through	 the	 technical-debt	measure.	Hence,	 to	estimate	
the	 Return	 On	 Investment	 (ROI)	 of	 an	 issue	 fix,	 it	 makes	 sense	 to	 estimate	 the	 debt	
divided	by	the	annual-interest.	This	estimation	is	the	breaking-point	for	which	the	lower	
the	value,	the	higher	the	ROI.	

Let's	specify	that	in	the	set	of	default	rules,	issues	that	are	relative	to	new	problems	since	
the	baseline,	 such	as	API	breaking	 changes,	 code	elements	quality	 getting	even	worse,	
new	code	elements	not	tested...	are	 issues	which	produce	a	higher	annual-interest	and	
thus	a	higher	severity	 than	 the	other	 issues.	This	complies	with	 the	best	practice	 to	 fix	
recently	introduced	issues	first.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			10	/	19	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			11	/	19	

6. Browsing	the	Technical-Debt	

In	the	introduction	we	saw	that	code	rules	are	implemented	through	C#	LINQ	queries	and	
we	 also	 saw	 that	 the	 debt	 and	 annual-interest	 estimations	 are	 inferred	 from	 formulas	
embedded	in	these	LINQ	queries.	

This	C#	 LINQ	queries	 scheme	goes	 further	 and	 can	be	 used	 to	 browse	 and	 explore	 the	
technical-debt.	The	domain	Issues	is	an	enumerable	of	all	issues	found	in	the	code	base.	
Obviously,	 queries	 that	 rely	 on	 this	 domain	 are	 executed	 after	 all	 rules	 have	 been	
executed.	

For	example,	when	clicking	a	number	of	 issues	on	the	dashboard,	 like	new	major	issues	
since	 baseline	in	 the	 example	 below,	 a	 code	 query	 is	 generated	 to	 list	 relevant	 issues.	
Notice	that	the	issues	can	be	grouped	per	rules	or	per	code	elements.	In	the	screenshot	
below	issues	are	grouped	per	rule.	

	

Notice	 the	 Explore	 Debt	 menu	 on	 the	 Dashboard	 that	 generate	 some	 queries	 on	 the	
rules,	issues	and	code	elements	to	explore	in-depth	the	technical	debt.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			12	/	19	

Right-clicking a Rules category, like the Code Coverage category here, shows menus to
query issues in this category:

	

Some	default	debt	and	issues	queries	can	be	found	in	the	Hot	Spots	group.	For	example	
the	query	Types	Hot	Spots	lists	the	types	with	most	debt	first.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			13	/	19	

	
The	Rules	domain	 is	 an	 enumerable	 of	 all	 active	 rules.	 It	 lists	 both	 violated	 and	 non-
violated	 rules.	 Queries	 can	 be	 written	 to	 list	 rules	 per	 debt	 and	 number	 of	 issues.	
Matched	rules	can	be	grouped	through	categories.	

With	no	surprise,	coverage,	code	quality	and	architecture	are	categories	 that	will	often	
generate	the	most	debt	and	issues.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			14	/	19	

	
The	baseline	plays	a	major	role	when	it	comes	to	exploring	the	issues	set	because	new	or	
fixed	issues	since	the	baseline	assess	the	quality	of	recent	work.	

Per	 default	 the	 baseline	 is	 the	 historic	 analysis	 result	 closest	 to	 30	 days	 ago	 and	 per	
default,	a	historic	analysis	result	is	persisted	at	most	every	day.	

Because	when	assessing	recent	work	quality,	one	will	certainly	want	 to	 juggle	between	
yesterday,	last	week	and	last	month	baselines,	the	CppDepend	dashboard	allows	you	to	
apply	 a	temporary	baseline	 with	 a	 single	 click.	 The	 debt	 and	 issues	 set	 is	 then	
recomputed	within	a	few	seconds	accordingly.	

	
And	since	assessing	issues	and	debt	since	the	baseline	is	important	as	we	just	saw,	all	Hot	
Spots	default	queries	come	with	a	since	baseline	version.	For	example	here	is	a	query	to	
assess	New	Debt	and	Issues	per	Rule	since	the	baseline.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			15	/	19	

	
Let's	 mention	 a	 subtlety	 when	 it	 comes	 to	 debt	 and	 issues	 querying.	 Types	 contain	
methods	 and	 fields,	 namespaces	 contain	 types	 and	 assemblies	 contain	 namespaces.	
Hence	types,	namespaces	and	assemblies	are	code	element	parents.	

All	 issues-related	ICodeElement	extension	 methods	
like	elem.Debt(),	elem.AnnualInterest(),	elem.Issues(),	 have	 a	 version	 prefixed	
with	All	that	 returns	 the	 debt	 and	 issues	 for	 the	 code	 element	 parent	 and	 all	 its	 child	
elements.	Hence:	

• elem.AllIssues()	returns	an	enumerable	of	issues	in	the	code	element	parent	and	
issues	 on	 its	 child	 code	 elements.	 Sometime	 in	 the	 product	 we	 use	 the	
terminology	cumulated	 issues	of	 a	 code	 element	 parent	 like	 an	 assembly,	 a	
namespace	or	a	type.	

• elem.AllDebt()	returns	the	estimated	summed	debt	for	the	code	element	parent	
and	its	child	code	elements.	

• elem.AllAnnualInterest()	returns	 the	 estimated	 summed	 annual-interest	 for	 the	
code	element	parent	and	its	child	code	elements.	

• elem.AllBreakingPoint()	returns	 the	 estimated	 breaking-point	 for	 the	 code	
element	parent	and	its	child	code	elements.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			16	/	19	

7. Technical	Debt	and	Quality	Gate	

You'll	find	default	quality	gates	relative	to	technical	debt	and	issues,	including	Percentage	
of	Debt,	New	Debt	since	Baseline	or	New	Blocker	/	Critical	/	Major	 Issues.	Quality	gates	
relative	 to	 absolute	 technical	 debt	 value	 are	 disabled	 by	 default	 because	 the	 proper	
thresholds	can	only	be	defined	in	the	context	of	a	particular	project.	

	
The	 same	 way	Issues	and	Rules	are	 predefined	 as	 queryable	 domains	 that	 provide	 an	
enumerable	 of	 issues	 or	 rules,	 the	 domain	QualityGates	is	 an	 enumerable	 of	 quality	
gates.	 The	 default	 query	 below	 estimates	 the	 quality	 gates	 trend	 since	 the	 baseline.	
Notice	 that	 quality	 gates	 that	 rely	 on	 the	 baseline	 (like	New	Debt	 since	Baseline)	 have	
neither	a	value	nor	a	status	defined	on	the	baseline.	

	
	

	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			17	/	19	

8. Reasons	 why	 Technical	 Debt	 might	 be	 Zero	 or	
incomplete	

My	technical-debt	estimation	shows	zero	or	?:	

If	the	technical	debt	is	zero	or	?,	you	are	likely	analyzing	a	project	created	with	an	older	
version	of	CppDepend	(v6	or	lower).	The	rules-set	of	previous	CppDepend	versions	didn't	
have	 debt	 formulas,	 and	 hence	 per	 default	 issues	 with	 no	 debt	 formulas	 have	 a	 zero	
debt.	

In	the	Dashboard	>	Debt	panel	you	should	see	a	link	named	Create	a	rule-file	with	default	
rules.	

Clicking	 this	 link	will	automatically	create	a	 rule-file	 that	contains	all	new	default	 rules,	
the	ones	with	debt	estimation	 formulas.	Once	done,	 it	 is	 recommended	 to	 replace	 the	
actual	project	rules	with	the	rules	that	estimate	the	technical	debt.	To	do	so,	drag&drop	
can	be	used	from	the	Queries	and	Rules	Explorer	panel	(both	for	rules	and	for	group	of	
rules).	Notice	that	debt	formulas	provoque	rule	compilation	errors	when	read	by	 lower	
versions	 of	 {0}	 (v6	 and	 lower).	 If	 you	 plan	 to	 use	 this	 project	 from	 CppDepend	 v6	 or	
lower,	please	clone	it	first.	

For	customized	rules,	we	recommend	to	modify	their	source	code	to	write	custom	debt	
estimation	formulas.	

Finally,	please	note	that	the	default	rules	file	will	be	created	in	the	same	directory	than	
the	project	file	and	will	be	attached	to	the	project	with	a	relative	file	path.	This	path	can	
be	edited	from	the	CppDepend	Project	Properties	>	Paths	Referenced.	

My	 technical-debt	 estimation	 is	 incomplete	 because	 no	 code	 coverage	
data	provided:	

Code	not	tested,	or	partially	tested	by	unit-tests,	represents	a	large	source	of	technical-
debt.	Actually	each	line	of	code	left	uncovered	by	tests	contributes	to	the	technical	debt.	
This	 is	 why	 the	 Debt	 section	 of	 the	 dashboard	 shows	 a	 warning	 message	 when	code	
coverage	files	import	is	not	setup	in	the	CppDepend	project.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			18	/	19	

Code	coverage	data	not	available	on	the	baseline:	

When	code	coverage	is	available	in	the	current	analysis	result	but	is	not	available	in	the	
baseline	analysis	result,	 rules	related	to	code	coverage	don't	produce	 issues.	 Indeed,	 in	
this	 situation	 coverage	 issues	 cannot	 be	 estimated	on	baseline	 and	 all	 coverage	 issues	
would	then	appear	as	new	issues.	

Often	this	situation	appears	when	a	project	has	been	created	and	the	first	analysis	result	
obtained	doesn't	contain	coverage	data.	 In	the	CppDepend	project	the	default	baseline	
setting	 is	 to	 choose	 the	baseline	analysis	 result	 closer	 to	obtained	30	days	 ago,	 so	 this	
problem	might	persist	for	a	month.	

Typically	to	 fix	 this	situation,	we	advise	to	get	rid	of	history	analysis	 result(s)	 that	don't	
have	 code	 coverage	 data.	 To	 do	 so	 you	 need	 to	 open	 the	 folder	 that	 contains	History	
Analysis	 Result	 defined	 in	CppDepend	 Project	 Properties	 >	 Analysis	 >	 Baseline	 for	
Comparison	>	Historic	Analysis	Results	(per	default	set	to	the	project	output	folder).	Then	
identify	the	folder	that	contains	the	history	analysis	result	to	remove	and	just	delete	the	
folder.	

For	example	in	the	screenshot	below,	the	selected	folder	represents	the	History	Analysis	
Result	obtained	on	the	13th	of	December	2016,	8:59	AM.	

	 	 	

	

Smart	Technical	Debt	Estimation	WhiteBook														 																			19	/	19	

We	 understand	 that	 this	 manual	 folder	 tweak	 is	 not	 the	 optimal	 way	 to	 solve	 such	
situation.	 If	 you'd	 like	 us	 to	 provide	 a	 UI	 that	 would	 list	 History	 Analysis	 Results,	 that	
would	show	which	ones	doesn't	have	coverage	data	(or	others	flaws	like	source	code	not	
resolved),	and	that	would	let	remove	them.	

We	could	also	provide	a	filter	at	analysis	time	that	would	not	persist	an	analysis	result	as	
history	if	it	doesn't	satisfy	certain	criteria	(like	coverage	data	available...).	

	

