
	
	

	

	

	

											
	
	
								

	
CQLINQ	SYNTAX	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

		

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		2	/	21	

Table	of	contents	
1. Introduction	...	3

2. CQLinq	Query	Edition	...	4

3. Predefined	domains	...	5

4. Defining	the	code	base	view	JustMyCode	with	notMyCode	prefix	7

5. CQLinq	Code	Rules	...	8

6. The	query	operator	and	query	expression	syntaxes	..	9

7. CQLinq	query	result	formating	...	10

8. Machine	code	elements	by	name	string	..	11

9. Defining	query	targets	..	13

10. Defining	range	variable	with	let	...	15

11. Beginning	a	query	with	let	..	16

12. Defining	a	procedure	in	a	query	...	18

13. Types	usable	in	a	CQLinq	query	..	19

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		3	/	21	

1. Introduction	

This document assumes that you are familiar with the C# LINQ syntax, and exposes the
CQLinq syntax peculiarities.

CQLinq, Code Query LINQ, is a feature proposed by the tool CppDepend since the version
3, to query C\C++ code through LINQ queries.
CQLinq syntax peculiarities are:

• CQLinq Query edition
• Predefined domains
• Defining the code base view just-my-code with notmycode prefix
• CQLinq code rules
• The Query operator and Query expression syntaxes
• CQLinq query result formatting
• Matching code elements by name string
• Defining query targets
• Defining range variables with let
• Beginning a query with let
• Defining a procedure in a query
• Types usables in a CQLinq query

	

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		4	/	21	

2. CQLinq	Query	Edition	

A CQLinq query can be edited live in the CppDepend UI (standalone or in Visual Studio).
The query is executed automatically as soon as it compiles.
Notice in the screenshot below the 1ms at the top right, that indicates the execution
duration of the query. CQLinq is fast and is designed to run hundreds of queries per
seconds against a large real-world code base.
CQLinq edition comes also with code completion/intellisense, and also tooltip
documentation on mouse hovering the query body.

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		5	/	21	

3. Predefined	domains	

CQLinq defines a few predefined domains to query on including:

• Types,
• Methods,
• Fields,
• Namespaces,
• Assemblies.

These domains can be seen as variables of type

• IEnumerable<IType>,
• IEnumerable<IMethod>,
• IEnumerable<IField>,
• IEnumerable<INamespace>,
• IEnumerable<IProject>.

These domains enumerate not only all code elements of the code base queried, but also
all third-party code elements used by the code base (like for example the type string and
all methods and fields of the type string that are used by the code base).

The syntax is as simple as:

from m in Methods where m.NbLinesOfCode > 30 select m

A CQLinq query can rely on one or several domains. Notice in the query above how the
domain word Methods is highlighted differently.

There is a predefined domain named context of type ICQLinqExecutionContext that is
the root of all others predefined domains. For example the domain Methods is actually
converted by the CQLinq compiler to the expression context.CodeBase.Methods:

from m in context.CodeBase.Methods where m.NbLinesOfCode > 30 selec
t m

The type of the domain context is reserved and thanks to the other predefined domains,
there is no need to use context.

There is also a predefined domain named codeBase of type ICodeBase that is converted
to context.CodeBase:

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		6	/	21	

from m in codeBase.Methods where m.NbLinesOfCode > 30 select m

There are two convenient predefined domains that are used
often: Application and ThirdParty.

As their name suggest, these domains are useful to enumerate code elements defined
only in application assemblies, or only defined in third-party assemblies
(like mscorlib.dll, System.dll or NHibernate.dll) and used by the application code. These
two domains are of type ICodeBaseView and represent each a partial view of the entire
code base.

from m in Application.Methods where m.NbLinesOfCode > 30 select m

The domains Application and ThirdParty are converted
to context.CodeBase.Application and context.CodeBase.ThirdParty.

Notice how the interface ICodeBase extends the interface ICodeBaseView, since the code
base can be seen as a total view on itself.

Thanks to the richness of the CppDepend.CodeModel namespace, it is easy to refine
these predefined domains.

For example the query below matches large methods defined only in the
namespace ProductName.FeatureA and its child namespaces:

from m in Application.Namespaces.WithNameLike("ProductName.FeatureA")
.ChildMethods()
where m.CyclomaticComplexity > 10 select m

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		7	/	21	

4. Defining	 the	 code	 base	 view	 JustMyCode	 with	
notMyCode	prefix	

There is another convenient predefined domain named JustMyCode of
type ICodeBaseView. The domain JustMyCode is converted to context.JustMyCode.

The domain JustMyCode represents a facility of CQLinq to eliminate generated code
elements from CQLinq query results.

For example the following query will only match large methods that are not generated by
a tool (like a UI designer):

from m in JustMyCode.Methods where m.NbLinesOfCode > 30 select m

The set of generated code elements is defined by CQLinq queries prefixed with the
CQLinq keyword notmycode.

For example the query below matches methods defined in source files whose name ends
up with designer.cs. These are file generated by some UI designer like the Windows
Form designer:

notmycode from m in Methods where
 m.SourceFileDeclAvailable &&
 m.SourceDecls.First().SourceFile.FileName.ToLower().EndsWith(".desi
gner.cs")
select m

The CQLinq queries runner executes all notmycode queries before queries relying
on JustMyCode, hence the domain JustMyCode is defined once for all. Obviously the
CQLinq compiler emits an error if a notmycode query relies on
the JustMyCode domain.

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		8	/	21	

5. CQLinq	Code	Rules	

A CQLinq query can be easily transformed into a rule by prefixing it with a condition
defined with the two CQLinq keywords warnif count.

The keyword count is an unsigned integer that is equal to the number of code elements
matched by the query.

For example the following query warns if some large methods are matched in the code
base application methods:

// <Name>Avoid too large methods</Name>
warnif count > 0
from m in Application.Methods
where m.NbLinesOfCode > 30
select m

CQLinq code rules are useful to define which bad practices the team wants to avoid in
the code base.

The team can see code rules violation warning in the CppDepend UI (standalone or in
Visual Studio), or in the report.
The team has also the possibility to define some rules as critical rules.
Here is the list of default CQLinq Rules and here is the documentation about validating
code rules inside Visual Studio.

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		9	/	21	

6. The	query	operator	and	query	expression	syntaxes	

Since the CQLinq syntax is based on the C# LINQ syntax, both the query operator syntax
and the query expression syntax are allowed. The query operator syntax is the one with
direct calls to System.Linq.Enumerable extension methods like Where() and Select()…

Methods.Where(m => m.NbLinesOfCode > 30)

The query expressions syntax is the one with special C# LINQ keywords
like where and select…

from m in Methods where m.NbLinesOfCode > 30 select m

Often you'll find convenient to mix both syntaxes in one query.

• The query operator syntax is convenient to define sub-set and sub-domains.
• The query expression syntax is convenient to define operations on these sub-sets and

sub-domains.

For example the query below defines with the query operator syntax the sub-set of
methods defined in static types, and use the query expression syntax to filter and project
the large methods from this sub-set.

from m in Application.Types.Where(t => t.IsStatic).ChildMethods()
where m.NbLinesOfCode > 30 select m

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		10	/	21	

7. CQLinq	query	result	formating	

The CQLinq query result formatting is constrained. A query result can be a simple
numeric scalar value like in the query above:

Methods.Where(m => m.NbLinesOfCode > 30).Count()

Or the query result can be an anonymous type, whose first property is of
type IType, IMethod, IField, INamespace or IProject,
and additional properties (if any) are of type:

• IType, IMethod, IField, INamespace or IProject or
• IEnumerable<IType>, IEnumerable<IMethod>, IEnumerable<IField>, IEn

umerable<INamespace> or IEnumerable<IProject> or
• A numeric scalar value or a numeric scalar value nullable

(like int, double? or Nullable<decimal>),
• A boolean or a boolean nullable (bool or bool?)
• A string
• A value of the enumeration CppDepend.CodeModel.Visibility.

For example the following query result is an enumerable of an anonymous type with 6
properties. Notice that a maximum of 16 properties is accepted for any anonymous type
used in a CQLinq query.

from m in Application.Methods
select new {
 m, // First property of type NDepend.CodeModel.IMeth
od
 m.Visibility, // of type NDepend.CodeModel.Visibility
 parentTypeName = m.ParentType.Name + m.Name, // of type string
 m.MethodsCalled, // of type IEnumerable<NDepend.CodeModel.IMethod>
 m.IsStatic, // of type bool
 m.NbLinesOfCode // of type Nullable<uint> (uint?)
 }

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		11	/	21	

8. Machine	code	elements	by	name	string	

The table below summarizes the three different properties involved in naming.

Kind of
code
element

IMember.FullName ICodeElement.Name ISimpleNam
ed.SimpleNa
me

Type System.String
System.Collections.Generic.
List<T>
System.Environment+Speci
alFolder

String
List<T>
Environment+SpecialFolder

String
List
SpecialFolder

Method System.Collections.Generic.
List<T>.Add(T)
System.Collections.Generic.
List<T>.ConvertAll<TOutpu
t>(Converter<T,TOutput>)

Add(T)
ConvertAll<TOutput>(Conv
erter<T,TOutput>)

Add
ConvertAll

Field System.String.Empty Empty -

Assembly - mscorlib
System

-

Namespace - System.Collections.Generic
System

Generic
System

Notice that the interfaces INamespace and IProject don't implement IMember hence
there is no full naming of namespace and assemblies.

Also the interfaces IField and IProject don't implement ISimpleNamed hence there is
no simple naming of fields and assemblies.

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		12	/	21	

With this naming system, it is easy to write CQLinq queries to match some code elements
by name:

from t in ThirdParty.Types where
 t.FullName == "System.Collections.Generic.List<T>" &&
 t.Name == "List<T>" &&
 t.SimpleName == "List"
select t

Notice that the static class ExtensionMethodsNaming presents some convenient extension
methods like WithFullNameIn(), that make code elements matching by name even easier:

from t in Types.WithFullNameIn("System.IDisposable", "System.String"
, "System.Object") select t

Some properties of CppDepend API and some of the ExtensionMethodsNaming extension
methods are specialized in name matching through regular expression. Notice here the
CQLinq compiler magic that occurs to make sure that the regular expression passed in
argument, is just compiled once for all code elements listed. Notice as well the regular
expression suffix \i for ignore case like regular expressions. To use \i the string constant
must be verbatim (i.e prefixed with the character@).

from t in Types.WithNameLike("ist") where
 t.FullNameLike("ist") ||
 t.NameLike(@"Lis\i") ||
 t.SimpleNameLike("is")
select t

Finally, some of the ExtensionMethodsNaming extension methods are specialized in name
matching with simple wildcard patterns, with the star * wildcard character:

from t in Types.WithFullNameWildcardMatch("System.I*") select t

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		13	/	21	

9. Defining	query	targets	

There are special API methods that take a code element name or full name string as
argument. These methods are extension methods defined in the
type ExtensionMethodsCQLinqDependency.

These methods are convenient to write elegant code queries, where no extra-characters
are consumed to first match a code element by name and then search for its usage. For
example the query below naturally matches disposable types:

from t in Types
where t.Implement("System.IDisposable")
select t

Notice that there is some CQLinq compiler magic to make sure that the
interface System.IDisposable is searched just once before executing the query.

Such code element is named a query target and is listed in the query execution result
pane.

In such situation, if no code element is matched by name, a query compilation error
occurs. The reason can be a misspelling error, but it can be as well that, for example, the
code base doesn't make any usage of the interface System.IDisposable. Only third-party
code elements used by the application code are listed in the third-party code.

Hence, to write generic queries that virtually compile and run on any code base (no
matter if the interface System.IDisposable is used or not), you can use
the stringextension method AllowNoMatch(), that will prevent compilation error, and
make the Implement() expression always returns false if the code elements cannot be
matched by name:

from t in Types where t.Implement("System.IDisposable".AllowNoMatch()
) select t

If a query target name matches several code elements of the same kind (like several
methods or several types) all these code elements are considered as query target.

If a query target name matches several code elements of different kinds, like for example
the "System" string can match both the System assembly and the Systemnamespace, a
query compilation error occurs. To resolve such situation, there are special extension
methods like MatchAssembly() that forces the matching to occurs only with a particular
kind of code elements:

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		14	/	21	

from t in Types where t.IsUsing("System".MatchAssembly()) select t

Finally, as the side screenshot shows, notice that the star * wildcard character can be
used to match several query target code elementes at once. Interestingly enough, in the
screenshot the type System.IO.File is matched, where one would expect only interfaces.

If the wildcard syntax is used, the extension methods usage will have a any behavior
(using any, implements any, with any return types...)

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		15	/	21	

10. Defining	range	variable	with	let	

The C# LINQ syntax present the facility to define range variables with the C#
keyword let. In this section, we wanted to underline this possibility because using
the letkeyword is a common practice when writing CQLinq queries.

For example, the following default rule define a custom code metrics thanks to several
range variables:

// <Name>C.R.A.P method code metric</Name>
// Change Risk Analyzer and Predictor (i.e. CRAP) code metric
// This code metric helps in pinpointing overly complex and unteste
d code.
// Reference: http://www.artima.com/weblogs/viewpost.jsp?thread=21589
9
// Formula: CRAP(m) = comp(m)^2 * (1 – cov(m)/100)^3 + comp(m)
warnif count > 0
from m in JustMyCode.Methods

// Don't match too short methods
where m.NbLinesOfCode > 10

let CC = m.CyclomaticComplexity
let uncov = (100 - m.PercentageCoverage) / 100f
let CRAP = (CC * CC * uncov * uncov * uncov) + CC
where CRAP != null && CRAP > 30
orderby CRAP descending, m.NbLinesOfCode descending
select new { m, CRAP, CC, uncoveredPercentage = uncov*100, m.NbLinesO
fCode }

Notice that using many let clauses in the main query loop can significantly decrease
performance of the query execution.

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		16	/	21	

11. Beginning	a	query	with	let	

The CQLinq compiler extends the usage of the C# LINQ let keyword, because with
CQLinq, the let keyword can be used to define a variable at the beginning of a CQLinq
query.

For example, the default CQLinq rule below, first tries to match
the System.IDisposable types, and if found, second let the query be executed.

// <Name>Types with disposable instance fields must be disposable</Na
me>
warnif count > 0

let iDisposable = ThirdParty.Types.WithFullName("System.IDisposable")
.FirstOrDefault()
where iDisposable != null // iDisposable can be null if the code bas
e doesn't use at all System.IDisposable

from t in Application.Types where
 !t.Implement(iDisposable) &&
 !t.IsGeneratedByCompiler

let instanceFieldsDisposable =
 t.InstanceFields.Where(f => f.FieldType != null &&
 f.FieldType.Implement(iDisposable))

where instanceFieldsDisposable.Count() > 0
select new { t, instanceFieldsDisposable }

For some others CQLinq rules, it can be convenient to define multiple sub-sets through
several let keyword expressions, before executing the query itself.

For example, the default CQLinq rules below; first define the sub-
sets uiTypes and dbTypes before using them in the query code.

// <Name>UI layer shouldn't use directly DB types</Name>
warnif count > 0

// UI layer is made of types in namespaces using a UI framework
let uiTypes = Application.Namespaces.UsingAny(
 Assemblies.WithNameIn("PresentationFramework", "Syst

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		17	/	21	

em.Windows",
 "System.Windows.Forms", "Syste
m.Web")
).ChildTypes()

// You can easily customize this line to define what are DB types.
let dbTypes = ThirdParty.Assemblies.WithNameIn("System.Data", "Entity
Framework", "NHibernate").ChildTypes()
 .Except(ThirdParty.Types.WithNameIn("DataSet", "DataTab
le", "DataRow"))

from uiType in uiTypes.UsingAny(dbTypes)
let dbTypesUsed = dbTypes.Intersect(uiType.TypesUsed)
select new { uiType, dbTypesUsed }

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		18	/	21	

12. Defining	a	procedure	in	a	query	

With the LINQ syntax it is possible to create a procedure in a query. This is useful if you
wish to invoke such procedure from different locations in the query.

This possibility is illustrated in the default rule below where the procedure to check if a
type can be considered as a dead type needs to be invoked from two different locations:

// <Name>Potentially dead Types</Name>
warnif count > 0
// Filter procedure for types that should'nt be considered as dead
let canTypeBeConsideredAsDeadProc = new Func<IType, bool>(
 t => !t.IsPublic && // Public types might be used by client appl
ications of your assemblies.
 t.Name != "Program" &&
 !t.IsGeneratedByCompiler &&
 !t.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".A
llowNoMatch()))
 // If you don't want to link NDepend.API.dll,
 // you can use your own IsNotDeadCodeAttribute and adapt thi
s rule.

// Select types unused
let typesUnused =
 from t in JustMyCode.Types where
 t.NbTypesUsingMe == 0 && canTypeBeConsideredAsDeadProc(t)
 select t

// Dead types = types used only by unused types (recursive)
let deadTypesMetric = typesUnused.FillIterative(
types => from t in codeBase.Application.Types.UsedByAny(types).Except
(types)
 where canTypeBeConsideredAsDeadProc(t) &&
 t.TypesUsingMe.Intersect(types).Count() == t.NbTypesUs
ingMe
 select t)

from t in deadTypesMetric.DefinitionDomain
select new { t, t.TypesUsingMe, depth = deadTypesMetric[t] }

	

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		19	/	21	

13. Types	usable	in	a	CQLinq	query	

Not all types are usable in a CQLinq query because internally, the CQLinq compiler and
runner are optimized to work with a defined set of types. You'll find in this list all types
needed to query a code base:

CppDepend.CodeModel

ExtensionMethodsHelpers

ExtensionMethodsNaming

ExtensionMethodsProjection

ExtensionMethodsSequenceUsage

IProject

ICodeBase

ICodeBaseView

ICodeContainer

ICodeElement

ICodeElementParent

ICodeMetric`2

ICodeMetricValue`2

ICodeNode`1

ICompareContext

IField

IMember

IMethod

INamespace

ISimpleNamed

ISourceFile

ISourceFileLine

IType

IUsed

IUser

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		20	/	21	

SourceFileLanguage

Visibility

CppDepend.CodeQuery RecordBase

Record`1, Record`2

Record`3, Record`4

Record`5, Record`6

Record`7, Record`8

Record`9, Record`10

Record`11, Record`12

Record`13, Record`14

Record`15, Record`16

CppDepend.Helpers ExtensionMethodsEnumerable

ExtensionMethodsSet

ExtensionMethodsString

CppDepend.Reserved.CQLinq ExtensionMethodsCQLinqCompare

ExtensionMethodsCQLinqDependency

ExtensionMethodsCQLinqNaming

ICQLinqExecutionContext

CppDepend.Path IPath

IDirectoryPath

IFilePath

IAbsoluteDirectoryPath

IAbsoluteFilePath

IRelativeDirectoryPath

IRelativeFilePath

PathHelpers

System.Linq Enumerable:

IGrouping`2

ILookup`2

IOrderedEnumerable`1

	 	 	

	

CppDepend	–	CQLinq	Performance																			 	 		21	/	21	

IQueryable`1

Queryable

System.Collections.Generic Dictionary`2,

HashSet`1,

ICollection`1,

IDictionary`2,

IEnumerable`1,

IEnumerator`1,

IList`1,

KeyValuePair`2,

List`1

System Array,

Boolean,

Byte,

Char,

Decimal,

Delegate,

Double,

Func`1, Func`2, Func`3, Func`4, Func`5

Int16, Int32, Int64

Math,

Nullable`1,

Object,

Predicate`1,

SByte,

Single,

String,

UInt16, UInt32, UInt64,

Void

	

