
	
	

	

	

	

											
	
	
								

	
DEPENDENCY	STRUCTURE	MATRIX	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	2	/	14	

Table	of	contents	
1. Introduction	...	3

2. Identify	Code	Structure	Patterns	on	Matrix	...	7

2.1 Layered	Code	..	7

2.2 Dependency	Cycle	..	8

2.3 High	Cohesion	–	Low	Coupling	...	10

2.4 Too	Many	Responsabilities	...	11

2.5 Popular	Code	Elements	..	12

2.6 Mutual	Dependent	...	13

	

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	3	/	14	

1. Introduction	

The DSM (Dependency Structure Matrix) is a compact way to represent and navigate
across dependencies between components. For most engineers, talking of dependencies
means talking about something that looks like that:

DSM is used to represent the same information than a graph.

• Matrix headers’ elements represent graph boxes
• Matrix non-empty cells correspond to graph arrows.

As a consequence, in the snapshot below, the coupling from PaintDotNet to PdnLib is
represented by a non-empty cell in the matrix and by an arrow in the graph.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	4	/	14	

Why using two different ways, graph and DSM, to represent the same information?

Because there is a trade-off:

• Graph is more intuitive but can be totally not understandable when the numbers of
nodes and edges grow (a few dozen boxes can be enough to produce a graph too
complex)

• DSM is less intuitive but can be very efficient to represent large and complex graph.
We say that DSM scales compare to graph.

Once one understood DSM principles, typically one prefers DSM over graph to represent
dependencies. This is mainly because DSM offers the possibility to spot structural
patterns at a glance. This is explained in the second half of the current document.

CppDepend offers Context-Sensitive Help to educate the user about what he sees on
DSM. CppDepend's DSM relies on a simple 3 coloring scheme for DSM cell: Blue, Green
and Black. When hovering a row or a column with the mouse, the Context-Sensitive Help
explains the meaning of this coloring scheme:	

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	5	/	14	

A non-empty DSM Cell contains a number. This number represents the strengths of the
coupling represented by the cell. The coupling strength can be expressed in terms of
number of members/methods/fields/types or namespaces involved in the coupling,
depending on the actual value of the option Weight on Cells. In addition to the Context-
Sensitive Help, the DSM offers as well a Info Panel that explains coupling with a plain-
english description:

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	6	/	14	

CppDepend's DSM comes with numerous options to try:

• It has numerous facilities to dig into dependency exploration (a parent column/row
can be opened, cells can be expanded...)

• It can deal with squared symmetric DSM and rectangular non-symmetric DSM
• Horizontal and Vertical headers can be bound, to constantly have a squared

symmetric matrix
• It comes with the option Indirect usage, where cell shows direct and indirect usage
• The vertical header can contains tier code elements

It is advised to experience all these features by yourself, by analyzing dependencies into
your code base.

	

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	7	/	14	

2. Identify	Code	Structure	Patterns	on	Matrix	

As explained in the introduction, DSM comes with the particularity to offer easy
identification of popular Code Structure Patterns. Let's present most common scenarios:

2.1 Layered	Code	

One pattern that is made obvious by a DSM is layered structure (i.e acyclic structure).
When the matrix is triangular, with all blue cells in the lower-left triangle and all green
cells in the upper-right triangle, then it shows that the structure is perfectly layered. In
other words, the structure doesn’t contain any dependency cycle.

On the right part of the snapshot, the same layered structure is represented with a
graph. All arrows have the same left to right direction. The problem with graph, is that
the graph layout doesn’t scale. Here, we can barely see the big picture of the structure. If
the number of boxes would be multiplied by 2, the graph would be completely un-
readable. On the other side, the DSM representation wouldn’t be affected; we say
that DSM scales better than graph.

Side note: Interestingly enough, most of graph layout algorithms rely on the fact
that a graph is acyclic. To compute layout of a graph with cycles, these algorithms
temporarily discard some dependencies to deal with a layered graph, and then
append the discarded dependencies at the last step of the computation.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	8	/	14	

2.2 Dependency	Cycle	

If a structure contains a cycle, the cycle is displayed by a red square on the DSM. We can
see that inside the red square, green and blue cells are mixed across the diagonal. There
are also some black cells that represent mutual direct usage (i.e A is using B and B is
using A).

The CppDepend’s DSM comes with the unique option Indirect Dependency. An indirect
dependency between A and B means that A is using something, that is using something,
that is using something … that is using B. Below is shown the same DSM with a cycle but
in indirect mode. We can see that the red square is filled up with only black cells. It just
means that given any element A and B in the cycle, A and B are indirectly and mutually
dependent.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	9	/	14	

Here is the same structure represented with a graph. The red arrow shows that several
elements are mutually dependent. But the graph is not of any help to highlight all
elements involved in the parent cycle.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	10	/	14	

2.3 High	Cohesion	–	Low	Coupling	

The idea of high-cohesion (inside a component) / low-coupling (between components) is
popular nowadays. But if one cannot measure and visualize dependencies, it is hard to
get a concrete evaluation of cohesion and coupling. DSM is good at showing high
cohesion. In the DSM below, an obvious squared aggregate around the diagonal is
displayed. It means that elements involved in the square have a high cohesion: they are
strongly dependent on each other although. Moreover, we can see that they are layered
since there is no cycle. They are certainly candidate to be grouped into a parent artifact
(such as a namespace or an assembly).

On the other hand, the fact that most cells around the square are empty advocate for
low-coupling between elements of the square and other elements.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	11	/	14	

In the DSM below, we can see 2 components with high cohesion (upper and lower
square) and a pretty low coupling between them.

While refactoring, having such an indicator can be pretty useful to know if there are
opportunities to split coarse components into several more fine-grained components.

2.4 Too	Many	Responsabilities	

The Single Responsibility Principle (SRP) is getting popular amongst software
architects community nowadays. The principle states that: a class shouldn’t have
more than one reason to change. Another way to interpret the SRP is that a class
shouldn’t use too many different other types. If we extend the idea at other level
(assemblies, namespaces and method), certainly, if a code element is using dozens of
other different code elements (at same level), it has too many responsibilities. Often the
term God class or God component is used to qualify such piece of code.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	12	/	14	

DSM can help pinpoint code elements with too many responsibilities. Such code element
is represented by columns with many blue cells and by rows with many green cells. The
DSM below exposes this phenomenon.

2.5 Popular	Code	Elements	

A popular code element is used by many other code elements. Popular code elements are
unavoidable (think of the String class for example) but a popular code element is not a
flaw. It just means that in every code base, there are some central concepts represented
with popular classes.

A popular code element is represented by columns with many green cells and by rows
with many blue cells. The DSM below highlights a popular code element.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	13	/	14	

Something to notice is that when one is keeping its code structure perfectly layered,
popular components are naturally kept at low-level. Indeed, a popular component cannot
de-facto use many things, because popular component are low-level, they cannot use
something at a higher level. This would create a dependency from low-level to high-level
and this would break the acyclic property of the structure.

2.6 Mutual	Dependent	

You can see the coupling between 2 components by right clicking a non-empty cell, and
select the menu “Open this dependency”.

If the opened cell was black as in the snapshot above (i.e if A and B are mutually
dependent) then the resulting rectangular matrix will contains both green and blue cells
(and eventually black cells as well) as in the snapshot below.

	 	 	

	

CppDepend	–	Dependency	Structure	Matrix													 																	14	/	14	

In this situation, you’ll often notice a deficit of green or blue cells (3 blue cells for 1 green
cell here). It is because even if 2 code elements are mutually dependent, there often
exists a natural level order between them. For example, consider
the System.Threading namespaces and the System.String class.

They are mutually dependent; they both rely on each other. But the matrix shows
that Threading is much more dependent on String than the opposite (there are much
more blue cells than green cells). This confirms the intuition that Threading is upper level
than String.

	

