SMART TECHNICAL DEBT ESTIMATION

Table of contents

| B [0] 1 oo [¥ ot o] o P PP PSP PPPTOPPPPTO 3
2. Annual-Interest and SEVEIItY.....covcuiiiie it e e 5
R T 1= o) Y =1 41 ¥ (PP 6
4. SQUALE Debt Ratio and Debt Rating.......cc.uveeeiiriiiiieiiiiiiiieee et e e 7
5. Prioritizing issues fix and the Breaking-Point metric.........ccccoovviiiiiiiiiniiiiiie e, 9
6. Browsing the Technical-Debtcoooiiiiiiiiiiie e 11
7. Technical Debt and QUality Gate......cceiviiiiiiiiiiiiiieee e 16
8. Reasons why Technical Debt might be Zero or incompleteccccevviiiieeiinnciiieennnns 17
Smart Technical Debt Estimation WhiteBook .,':‘, CppDepend 2/19

1.Introduction

Nowadays, the technical-debt metaphor has been widely adopted by the software
industry. It was coined by Ward Cunningham in 1992.

This reference article by Martin Fowler describes the technical-debt metaphor in great
detail. To quote M.Fowler:

In this metaphor, doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt. Like a financial debt, the technical debt incurs interest
payments, which come in the form of the extra effort that we have to do in future
development because of the quick and dirty design choice. We can choose to continue
paying the interest, or we can pay down the principal by refactoring the quick and dirty
design into the better design. Although it costs to pay down the principal, we gain by
reduced interest payments in the future.

Using CppDepend, code rules can be written through C# LINQ queries. Applied on a code
base a rule yields issues. A dedicated debt APl is proposed to estimate both the technical-
debt and the annual-interest of the issue through formulas written in C#. Both the
technical-debt and annual-interest of an issue are measured in man-time.

The technical-debt is the estimated man-time that would take to fix the issue.

The annual-interest is the estimated man-time consumed per year if the issue is left
unfixed. This provides an estimate of the business impact of the issue.

For example:

warnif count > @
from m in Methods
where m.CyclomaticComplexity > 10
select new {
m,
m.CyclomaticComplexity,
Debt = (3*(m.CyclomaticComplexity -10)).ToMinutes().ToDebt(),
AnnualInterest = (m.PercentageCoverage == 100 ? 10 : 120).ToMinutes().ToAnnu
alInterest()

}

In this example, the rule matches methods which are too complex, the complexity being
measured through the Cyclomatic Complexity code metric. We can see that:

e The technical-debt is proportional to the complexity above a certain threshold.
e The annual-interest is 10 minutes per year if the method is 100% covered by tests,
else it is 2 hours per year.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 3/19

Leaving a complex method both unrefactored and uncovered by tests is an error-prone
situation. At best such a situation impairs maintainability of the code, at worse it ends up
in bugs at production time. The annual-interest estimates the average cost per year if the
complex method is left unrefactored. This worsens if the method also is uncovered by
tests. The word average is highlighted here due to the fact that, for example, out of 8
complex and untested methods maybe only one has a bug that will cost 2 days of man-
work (2x8 hours) to be discovered, investigated, fixed and delivered.

Each rule in the set of default rules contains formulas to compute the technical-debt and
the annual-interest for each issue. Rules and formulas can be created and customized to
better match your teams' needs and habits since it is only raw C# which can be edited in
Visual Studio. The main advantage is that the technical-debt estimation is entirely
transparent and easily customizable with CppDepend.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 4/19

2.Annual-Interest and Severity

The annual-interest is a measure of an issue severity. The severity and the annual-
interest represent the same concept where the annual-interest is a continuous measure
while the severity is a discrete measure.

CppDepend defines 5 levels of severity, and the severity of an issue is estimated through
thresholds based on the annual-interest.

Low: An issue with a Low severity level represents a small improvement, a way to make
the code look more elegant. Default Annual Interest threshold: zero or less than 2 man-
minutes per year.

Medium: An issue with a Medium severity level represents a warning for an issue that,
even if not fixed, won't have a significant impact on development. Default Annual
Interest threshold: less than 20 man-minutes per year.

High: An issue with a High severity level should be fixed quickly, but can wait until the
next scheduled interval. Default Annual Interest threshold: less than 2 man-hours per
year.

Critical: An issue with a Critical severity level should not move to production. It still can
for business imperative needs purposes, but at worth it must be fixed during the next
iterations. Default Annual Interest threshold: less than 10 man-hours per year.

Blocker: An issue with a Blocker severity level cannot move to production, it must be
fixed. Default Annual Interest threshold: more than 10 man-hours per year.

Notice that the notion of critical issue is different from the notion of critical rule. The
severity of an issue is not related to its rule being critical or not. A rule can be tagged as
critical to enforce some constraint on it, like for example a quality gate that fails upon
critical rule violation can be written.

Queries and Rules Edit - 5 methods matched
Do nothide base class methods + X

"] |ViewDescriplion Run on Baseline Report: [y % O

Rulesin: Rules.ndrules \ Object Oriented Design 29ms
// <Name>Do not hide base class methods</Name> ~
warnif count > @

// Define a lookup table indexing methods by their name including parameter:
let lookup = Methods.Where(m => !m.IsConstructor &% !m.IsStatic &% !m.IsGene¢
.ToLookup(ml => ml.Name)

from t in Application.Types v
< >

! |Rule compilation succeeded but warning condition fulfilled

o = ‘ O Groupby: w8 = £ |4 @& D | s Export to Graph ~
5 methods baseMethods Debt Severity
5 methods matched
4 wENDepend APl (= methods 25d
4 {} NDepend Helpers (2 methods 3d 5h
4 %%, ExtensionMethodsEnumerable+D 46min
@ GetEnumerator() 1 method 10min @ Major
& get_Count() 1 method 10min @ Major
@ get_ltem(TKey) 1 method 10min @ Major

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 5/19

3.Debt Settings

Technical-debt computation and results can be fine-tuned through the settings in the
panel CppDepend > Project Properties > Issues and Debt.

Prosectropertes
w(2/»mn

Number o o 20

© The technical debt of one o sen
estinated efot o fcthese st

Factor o I

Defaukt Vave o [0

SQUALE Debt Ratio 0

Average cost of 3 manhour of developement (50

Curency symbal ~[USD Unted Sites Dolar -]

Curency symbol location O beforefiguwe ® afterfigure

Debt estimated offorttoficone o severalissuss.

ssues, repesents the

1#] [manmintes v

Fomatting sample

B uso

1

10

10 manminutes

OOmanhous 12504

o
[- Gex
® ieting o s e e ”
Paths Referenced e e My
oo o)
5 p
Narberctvotchspercey 0 8 2] Dot/ Amualniseavatetomat 0 [adms]

Annual Interest estmated costperyearto et one orseverd isues urfed

(st cofout) o

oy inteest s expressed i man iy peryear
¥ can b viewed s the Business Impac o the ssues

Factor °

Default Value 0

g

12 [manminses

(oot defat)

oo v ©
2 & manminges v
caonE o e ©
) = @ Maor ©
oo
— [m—
e

You can see:

e Thresholds relative to issues severity and annual-interest which were explained in
the previous section.

e Thresholds relative to SQALE debt-rating explained in the next section

e Two multiplicative factors that can be applied to all technical-debt and annual-
interest estimated values. By default these factors are set to 1.

e To make sure that debt estimations are shown through meaningful man-time
measures, settings concerning the number of work-hours per day or number of
work-days per year can be adjusted.

e There are also settings to choose how debt values are formatted and to
convert man-time debt values into money cost debt values.

Man-time and Money formatting

(set defaul]
© These seftings are used to fomat the Technical Debt costs with meaningful dimensions, including man-day. man-morih and money amount. e
Number of work-hourperday @ |8 il * Debt / Annualinterest value format @ | SIEEERIEIEEE v
RS pe v O 245 | T A Formatting sample 10manmines 10min | 10.0€
1 man-hour 1h Omin | 60.0€
* Average cost of a man-hour of developement |60 B e 10man-hours 1d 20 | 600€
- 100 man-hours 12d 4h | 6.00K€
= Cumency symbol l‘: v 1000 man-hours 125d | 60.0K€
10 000 man-hours 1250d | 600K €

Curency symbol location O before figure @ afterfigure

ol
Smart Technical Debt Estimation WhiteBook V CppDepend 6/19

4.SQUALE Debt Ratio and Debt Rating

The SQALE method (commonly pronounced “scale”) is a standardized way to assess the
technical-debt. CppDepend implements the Debt Ratio and the Debt Rating that are part
of the SQALE method.

The Debt Ratio on a code base, or on a code element, is expressed in percentage of the
estimated technical-debt, compared to the estimated effort it would take to rewrite the
code element from scratch. The estimated effort it would take to rewrite the code
element from scratch is inferred from the code element size in lines of code, and from
the debt setting named Estimated number of man-days to develop 1.000 logical lines of
code (see the screenshot in the previous section about debt settings).

The value of the Estimated number of man-days to develop 1.000 logical lines of
code setting is just an estimation so in the short-term it is meaningless. After a few man-
months or even man-years of development this value is typically stable enough to rely on
for estimation purposes. This estimated setting also needs to take into account the cost
of writing unit-tests. The default value is 18 man-days which represents an average of 55
new logical lines of code, 100% covered by unit-tests, written per day, per developer.

The Debt Rating of a code base or of a code element is inferred from thresholds applied
on the Debt Ratio. The Debt Rating is in the range I, B, C, E, . The four thresholds are
customizable in the debt settings panel (see the screenshot in the previous section about
debt settings). The default thresholds are:

e [0, 5% [of Debt Ratio leads to an I debt rating.

e [5%, 10% [of Debt Ratio leads to a B debt rating.

e [10%, 20% [of Debt Ratio leads to a C debt rating.
e [20%, 50% [of Debt Ratio leads to a E debt rating.
e 50% or more of Debt Ratio lead to an |3 debt rating.

The code base Debt Rating and Debt Ratio values are shown in the Dashboard. In the
section Browsing the Technical-Debt we'll show that simple C# code queries can display
the Debt Ratio and Rating values for any code element.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 7/19

NHibernate 4.0.4 4 Baseline: t = NHibernate 3.4

Analysis Date Today 15:22 most recer Analyes Date Today 15:2 most recer
© Choose Baseline ©® 1mn 2mn 1d 2d 5d 7d 0d 60d 87d any define
Lines of Code Debt Quality Gates
73905 ™ 72 19.01% 7 from 18.14% & il 6 —
15386 (NotMyCode) A +67 & Wam 2
Estimated Dev ot 1940d W -12.37d Raing G 174defiottoreach B @ Pass 3
Debt 368d A +14d 5h
Annual Interest 221d A +65d
Types Breaking Point 20m -8m Rules
2558 73 Explore Debt ~ i Crtical 13
2 Assemblies @ o dif 1 Violated 103
100 Namespaces © no diff ® ok 40
22277 Methods © no diff Coverage -
6285 Fields N 71 76.25% 2 from 75.25%
;23 i::::aﬁrttsaem;: A 452 56349 Lines of Code Covered 71 157 Issu;s 19098 <3111 -18%0
h 17556 Lines of Code Not Covered W -919
0 Lines of Code Uncoverable € no diff © Blocker 0
@ Critical " +5 2
Comment @ Maor 2416 +1578 93
3485% 7 from3481% Method Complexity © Minor 14364 +1355 -1640
39530 Lines of Comment % -216 192 Max © nodiff © Info 2307 +173 -155
197 Average M -0.0063 ° s vl

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 8/19

5.Prioritizing issues fix and the Breaking-Point
metric

The Breaking-Point of an issue or of a set of issues, is the time point from now to when
the estimated cost-to-fix the issue(s) will reach the estimated cost to leave the issue(s)
unfixed.

The breaking point is the debt divided by the annual-interest. For example if the
estimated cost-to-fix the debt is equal to 10 man-days and the estimated annual-interest
is equal to 2 man-days per year, then the breaking point is equal to 5 years from now.

Notice that a breaking point which is lower than a year means that during the next 12
montbhs, it is estimated that it would be cheaper to fix the debt than not to fix it.

Notice also that a breaking point is not measured through man-time like debt or annual-
interest (a man-month or a man-year), but rather through regular duration (months or
years). Breaking point values are typed with TimeSpan.

When it comes to prioritizing issues to fix first, the issue severity is an important
parameter. As a reminder: the severity is the discrete measure of the annual-interest.
Hence the higher the annual-interest, the more important it is to fix.

However, given a certain severity level, not all issues are equal. Some will demand more
effort to fix. This is estimated through the technical-debt measure. Hence, to estimate
the Return On Investment (ROI) of an issue fix, it makes sense to estimate the debt
divided by the annual-interest. This estimation is the breaking-point for which the lower
the value, the higher the ROI.

Let's specify that in the set of default rules, issues that are relative to new problems since
the baseline, such as API breaking changes, code elements quality getting even worse,
new code elements not tested... are issues which produce a higher annual-interest and
thus a higher severity than the other issues. This complies with the best practice to fix
recently introduced issues first.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 9/19

Queries and Rules Edit - 18 422 issues matched

2 x

Smart Technical Debt Estimation WhiteBook

1 | View Description | RunonBaseline % Critical Report: Ly [% D Eol7)
Rulesin: Rules.ndrules \Hot Spots 54ms
// <Name>Issues to Fix Priority</Name> ~
from i in Issues
where i.BreakingPoint > TimeSpan.Zero
orderby i.BreakingPoint.TotalMinutes ascending
select new { i,
Debt = i.Debt,
Annuallnterest = i.Annuallnterest,
BreakingPoint = i.BreakingPoint,
CodeElement = i.CodeElement
’ v
@ = | ©Groupby: »a = £ 4% @ D [38 Export to Graph ~
18422 issues Debt Annual Breaking Point CodeElement A
Interest
18422 issues matched
4 wENHibernate (77 367d 217d 618d
© Mark assemblies with Com\Visible 5min 2min 0s @ 912d =@ NHibernate
4 {} NHibernate Cfq (477 /ssues 13d 7h & 1h 615d
4 *3 SettinasFactory (0 1d 1h 1d 6h 234d
© Avoid namespaces mutually dependent 15min 5h 42min @ 15d #3 SettingsFactory
@ Avoid namespaces mutually dependent 15min 1h 42min @ 534 #y SettingsFactory
@ Avoid namespaces mutually dependent 15min 1h 37min @ 55d # SettingsFactory
@ Avoid namespaces mutually dependent 15min 55min @ 99d #y SettingsFactory.
@ Avoid namespaces mutually dependent 20min 47min @ 154d %y SeftingsFactory
@ Avoid namespaces mutually dependent 25min 33min @ 270d #y SettingsFactory
@ Avoid namespaces mutually dependent 30min 33min @ 329d #g SeftingsFactory
4 Ci tor icti i trir 29min 35min 2%8d
@ Avoid namespaces mutually dependent 15min 33min @ 162d @, CreatePatcherFactory(IDictionary<:
@ Code should be tested 14min 2min 0s @ 2611d §, CreateBstcherFactorv(IDictionary<:
4 © Bui i icti ing String>) (5 5h 56min 2h 5min 10354
@ Avoid namespaces mutually dependent 15min 33min @ 164d @ BuildSettings(IDictionary<String, Stri
@ Avoid making large methods even large 15min 26min @ 210d @ BuildSettings(IDictionary<String Stri
© Avoid methods potentially poorly commen 13min 8min @ 547d @ BuildSettings(IDictionary<String,Stri
@ Avoid methods with too many local variab ~ 2h 50min 45min @ 1367d © BuildSettings(IDictionary<String, Stri
© Code should be tested 2h 22min 1imin @ 4374d @ BuildSettings(IDictionary<String,Stri
4 @000 (7 =) 3min Os 2min Os 547d
© Static fields naming convention 3min Os 2min 0s @ 547d @, log
4 P, CreateCacheProvider(IDictionary<String,Strin 6min 2min 0s 1176d
© Code should be tested 6min 2min 0s © 1176d §, CreateCacheProvider(IDictionary<§
4 P, CreateQueryTranslatorFactory(IDictionary<S Smin 2min 0s 11764
© Code should be tested Emin 2min 0s @ 1176d @, CreateQueryTranslatorFactory(IDic

-,':g CppDepend

10/19

6.Browsing the Technical-Debt

In the introduction we saw that code rules are implemented through C# LINQ queries and
we also saw that the debt and annual-interest estimations are inferred from formulas
embedded in these LINQ queries.

This C# LINQ queries scheme goes further and can be used to browse and explore the
technical-debt. The domain Issues is an enumerable of all issues found in the code base.

Obviously, queries that rely on this domain are executed after all rules have been
executed.

For example, when clicking a number of issues on the dashboard, like new major issues
since baseline in the example below, a code query is generated to list relevant issues.
Notice that the issues can be grouped per rules or per code elements. In the screenshot
below issues are grouped per rule.

Queries and Rules Edit - 27 rules matched
TODO short description

7 Create Trend Chart ChartsRange: 1w 2w Tm 2m 3m 6m |

Wi | ViewDescription | RunonBaseline 7% Critical ~ Report: v, .
The query is not persisted! Sms
// <Name>Major issues added since baseline (grouped per r a Broict Name- NI
let issues = Issues.Where(i => i.WasAdded() && i.Severity Baseine: T"o';"’e:";_;“
let rules = issues .Tolookup(i => i.Rule) ay 15
from grouping in rules , ed by NDepe:
let r = grouping.Key
1t rilaTecimc = ornunine Tndrrav() M N 87d @165 any define
< >
@ & | 0Gouwby: & | Iz EporttoGraph - .
ebt Quality Gates
~ .
27 rules Debt 9.01% 2 fom18.14% & Fai .
+ Wam 2
aing C 174 efforttoreach B
Y. API Ereaking Changes: Methods 450issves 9d 3n & Pass 3
1, New Methods should be tested 322issues 2d Oh | [febt 368 A +1dd 5h
1. Methods refactored should be tested 20issves 24 th | fonual interest 2214 A 463
a . .
4. AP Breaking Changes: Fields 2i0issves 443 foninorom 2om W o Rules
1, From now. all types added should be 100% cov 62issues 1d 2h
74, API Breaking Changes: Types 60issues 24 4h Rhoiore Debt - 7y Citical 1
73, API Breaking Changes: Interfaces and Abstraci 40issues 6h 40min o Volsted 102
1. Avoid making large methods even larger 29issves 5h 19min !
j, From now, all methods added should respectb 27issues . 2h 15min ® o 40
1. Avoid decreasing code coverage by tests oftyy 27issues 1 4h @
1. Avoid making complex methods even morecor 27issues 1d Oh fpoverage -
1, Types almost 100% tested should be 100% tes 19issves 3h 28min ~ ¥6.25% A from 75.25% .
74 Avoid namespaces mutually dependent 15 issues 480 Mo 249 Lines of Code Covered A +187 ssues
4. Types that used to be 100% covered by tests s 15 issues 40min B “ Al 19098 $111 -18%0
1. Do implement methods that throw Notlmplemer 13issues 7h 34min |/ 956 Lines of Code Not Covered 919 Hosk
1. Constructor should not call a virtual method ~ 10issues 1d 2h | Lines of Code Uncoverable © o dif o o 0
1. Avoid adding instance fields to a type that alre: ~ 8issues 2h 10min O Citical nmops 2
1. Methods should have a low C.RAP score Gissves 2d 4h © Mior 2416 M5B %
1. Code should be tested 4issues 128 ; .
1. Do not raise reserved exception types sissues | 1h 50min [l Cthod Complexity © Mnor 14364 <1355 1640
1, Avoid transforming an immutable typeintoami 2issues 40min 92 Max © nodff © Info 2307 +173 155
1, Namespaces almost 100% tested shouldbe 10 2issves 28min |57 Average -0.0063 :
74, Avoid having different types with same name ~ 2issues 3h 50min O |Group issues by rules ©
4. From now, all types added should respectbasi Tissue 10min
Sum I 2(A
< > < >

Notice the Explore Debt menu on the Dashboard that generate some queries on the
rules, issues and code elements to explore in-depth the technical debt.

s
Smart Technical Debt Estimation WhiteBook V CppDepend 11/19

Queries and Rules Edit - 70 rules matched » X
TODO short description

Dashboard

New Debt and Issues per... . X %+

Create Trend Chart Charts Range: 1w 2w 1m 2

1 | View Description | RunonBaseline 7% Critical ~ Report: =
Rulesin: NDepend_v2017_1_0_DefaultRules.ndrules \ Hot Spots sms 404 V4004 Baseline: ~roject NHibernate 3.4
// <Name>New Debt and Issues per Rule</Name> ~ ecen A 7= Today 15:21
from r in Rules Depe 7
where r.IsViolated() && r.IssuesAdded().Count() > @
orderby r.DebtDiff().Value descending mn 2mn d 2d 3d ad 5d 7d ad
select new {
= v
< S
Debt
@ & | 0Gouby: & | 3z EporttoGraph - 19.01% 7 fom 12.14%
70 rules IssuesAdded IssuesFixed A A .57
e ————— [Rating C 174deffotttoreach B
4 "4 Rulesin: NDepend_v2017_1_0_Defaul Debt 3634 A +14d 5n
74, API Breaking Changes: Methods 450 issues noissue Annual Interest 221d A +63d
L < =
1, API Breaking Changes: Fields 210issues noissue - . a
"4, API Breaking Changes: Types GOissves noissue Breaking Point 20m % &n
"4, AP Breaking Changes: Interfaces anc 4D issues noissue Explore Debt -
4 8 Rulesin: NDepend_v2017_1_0_Defaul
1 Avoid adding methods to a type thata 28 issues. noissue i %% Debt and Issues per Rule
1, Avoid decreasing code coverage by t 29issues noissue 0 diff New Debt and Issues per Rule
1. From now, all types added should be 62 issues no issue dif
1, Avoid making complex methods even 27issues noissue " Debtand Issues per Code Element
1. Avoid making large methods evenlar 29 issues no issue PR s @
1, From now, all methods added should 27 issues noissue 2
1, Avoid adding instance fields to a type 8issues noissue s A 52 & Types Hot Spots
1. Avoid transforming an immutable type 2issues noissue .
i Fromnow, all ypes added shouldres lissue noissue WOy
4 A Rulesin: NDepend_v2017_1_0_Defaul) Project’s Debt Settings
1, Methods refactored should be tested 220 issues noissue . .
1, New Methods should be tested Wissues noissue) @ Howis Debt Estmated?
1. Types 100% covered should be tagge 41 issues 23issues 81’
1, Types almost 100% tested should be 19issues 4issues ~ 316 192 Max © nodif

Right-clicking a Rules category, like the Code Coverage category here, shows menus to
query issues in this category:

IR .cries and Rules Explorer 2 x
& & CresteGroup RuleFile~ Delete Create Query
Wi | View Description | RunonBaseline 7% Critical Report: [y | I 1. DeleteQuey @
The query is not persisted! 10ms & [Eroettrd B
// <Name>Issues in Category: Rules in : Rules.ndrules \ Code Cove a voject RiRes Ra(6 que ©
£rom issue in Issues v ¢ Rulesin: Rules.ndrules queries) @
where issue.Rule.Category.StartsWith(@"Rules in : Rules.ndrules \ [[Quality Gates| .ulesin: Rules.ndrules\ |
select new { [T Code Quality]
issue, " [codequalityRegression
Denr L ssue nent AN > [T, [Object Oriented Design] (< Ave #ltems Code
(M1 Design a & A6 cos
& & | 0Goupby: =a = £ |4 [§ D | 38 BporttoGuaph - AR Arcitecture oo
- & a2 New
8383 issues Debt ‘Annual Breaking P A . [Code Coverage | (A v 4 &20 Meth
s " Create Child Query
B3t enncnmichal E Create Child Group
4l 3t 4l I CresteBrother Group
4 () Nibernate Cfo 1d7h & h g
4 * Confiouration 80h 2d7h L B Renome
4 O, ClearListeners(ListenerType) (s 1d 2h Th S3min
@ Codo ahorid bg eeind. i B List Code Queries of this Group in a dedicated section in Report
@ Methods shoul Select Issues of Rules in this Category | Select Issues ... »
4 © SetlistenersiListef
I I
© Gty Select Newlssues of Rules in this Category g Copy
@ Methods shoul Select New or Worsened Issues of Rules in this Category A Paste
49 Agv::zeusmﬂ Select Fixed Issues of Rules in this Category 0 Paste a Default Group of Code Queries N
shou v
@ Methods should have alow CRAF 1h 15min 20min @ & Export Queries Results to HTML
4 © AddXmiFile(String) (7 6min 19min
© Code should be tested 16min 19min © [3] Export Queries Resuits to XML
4 © AddDocument(XmiDocument,String) 25min 16min X Delete
 Codde shouir ha toted Femin | 1Rmin €

Some default debt and issues queries can be found in the Hot Spots group. For example
the query Types Hot Spots lists the types with most debt first.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 12 /19

Queries and Rules Edit - 2061 types matched 2 x

I: Fix Priority TypesHotSpots X *
"] ‘ View Description I Run on Baseline "% Critical Report: Oy X to J(7)
Rulesin: Rules.ndrules \ Hot Spots 23ms
// <Name>Types Hot Spots</Name> A
from t in JustMyCode.Types
where t.AllDebt() > Debt.Zero &&
t.AllAnnuallnterest() > Annuallnterest.Zero
lorderby t.AllDebt().Value.TotalMinutes descending
select new { t,
Debt = t.AllDebt(),
Issues = t.AlllIssues(), // Alllssues = {types issues} union {members issues}
Annuallnterest = t.AllAnnuallnterest(),
BreakingPoint = t.AllBreakingPoint(),
t.NbLinesOfCode,
// t.PercentageCoverage, to uncomment if coverage data is imported
DebtRating = t.DebtRating(),
R ek DR L) =
= & ‘ © Groupby: v = £ (%4 @ D | s Export to Graph ~
2061 types Debt Issues Annual Breaking Point ~ #linesof D DebtRato A
Interest code (LOC) eb
2061 types maiched
4 wENHibernate (7 905 fypes 367d 217d 618d 71835
4 {} NHibernate Persister Entity (7 0o 19d 1h 6d Oh 1165d 2404
¥ AbstractEntityPersister 10d 5h 164 issues 3d 4h 1087d 1491 C 31.32
#3 SingleTableEntityPersister 3d Oh 44issues 6h 44min 13344 I C 36.42
#3 JoinedSubclassEntityPersister 2d 1h 26issues 3h 55min 1628d 258 C 37.38
+0 |EntityPersister 1d 2h Gissues 2h 4Smin 1311d N/A E 7823
%3 UnionSubclassEntityPersister 7h 42min 22issues 2h 56min 958d 152 C 27.18
43 NamedQueryloader 1h 34min Bissues 38min 888d 16 C 4757
+0 |Loadable 1h 31min 3issues 6min 5064d A B 81.81
#3 AbstractPropertyMapping 1h 14min 7 issues 23min 1171d 88 . 7.96
BiQueryable [53min Jissudb 29min 7254 N/A 3 4062
+0 |OuterJoinLoadable 51
+0 Loinable 2 @ G | © Groupby: »a %| & D | -
o= EntityPersister 1301 3issues Debt Annual
%, AbstractEntityPersister+Property 12n] Interest
BasicEntityPropertyMapping |
%, AbstractEnityPersister « 4min 3 hide
5, AbstractEntityPersister+Fulllnclusi 4min 3{ 4 *8 NHibernate (7 50 367d 217d
5, AbstractEntityPersister+Generated 3min 4] 4 {} NHibernate Persister Entity (7 50 18d 1h 6d Oh
*9 AbstractEntityPersister+linclusion(2min *+0 |Queryable N/A N/A
4 {} NHibernate Cfa (20 fypes 13d | Issues: 3issues
e 8| | wmNHibernste (2 iscues 374 2174
Mappings 18| 4 {} NHibemate Persister Entity /7 19d 1h 6d Oh
’QM R 1d 4 *O|Queryable (7 s, 59min 29min
& ConfiaurationExtensions, Q0 © Avoidinterfaces too big Smin Smin©
23 Environment 3h 26n @ Avoid having different types vith same nam 10min 20min @
2%3.*”\’“" 1: Ez" © Avoid defining multiple types in a source file 3min Os Omin Os ©@

The Rules domain is an enumerable of all active rules. It lists both violated and non-
violated rules. Queries can be written to list rules per debt and number of issues.
Matched rules can be grouped through categories.

With no surprise, coverage, code quality and architecture are categories that will often
generate the most debt and issues.

-,':;- CppDepend

Smart Technical Debt Estimation WhiteBook 13/19

Queries and Rules Edit - 105 rules matched X

Issues to Fix Priority

[*] | View Description | Run onBaseline 3 Critical Report: [y b D Lo (7]
Rulesin: Rules.ndrules \Hot Spots 2ms
// <Name>Debt and Issues per Rule</Name> A
from r in Rules
where r.IsViolated()
orderby r.Debt().Value descending
select new {
ry
Issues = r.Issues(),
Debt = r.Debt(),
Annuallnterest = r.Annuallnterest(),
BreakingPoint = r.BreakingPoint(),
Category = r.Category
} v
@ = | © Group by: %%, ’ %2 Export to Graph ~
105 rules Issues Debt Annual Breaking Point A
Interest
105 rules matched
4 1 Rulesin: Rules.ndrules\Code Coverage v 141d 70d 731d
1, Code should be tested 6 887 issues 128d 40d 1146d
1. Types 100% covered should be tagged with Fu 552 issues 3d 3h Omin Os 00:00:00
1, Methods should have a low C.R.A.P score 76 issues 2d 4h 3d 1h 298d
1, Methods refactored should be tested 220 issues 2d 1h 8d 1h 86d
1, New Methods should be tested 322issues 2d Oh 13d 3h 55d
1 Assemblies Namespaces and Types should be 239 issues 1d 7h Omin O0s 00:00:00
1 Types almost 100% tested should be 100% tes' 73 issues 3h 28min 3d Oh 52d
1, Types that used to be 100% covered by tests s 15 issues 40min 5h Omin 43d
1. Namespaces almost 100% tested should be 10 4issues 28min 1h 20min 128d
4 "3 Rulesin: Rules.ndrules \ Architecture (4 /s 494 37d 4884
¥i. Avoid namespaces mutually dependent 1304 issues 48d 36d 481d
1 Avoid namespaces dependency cycles 2issues 4h Omin 40min 2190d
1 Namespaces with poor cohesion (RelationalCo 13 issues 2h 10min Omin 0s 00:00:00
1. Assemblies with poor cohesion (RelationalCoh: 2issues 20min Omin Os 00:00:00
4 "1 Rulesin: Rules.ndrules \ Code Quality /9 ru/=s 103d 22d 1712d
1, Avoid types with too many methods 129 issues 33d 4d 3h 2778
¥4 Avoid methods too big, too complex 74 issues 24d 1d 5h 5226d
i Avoid methods with too many parameters 75 issues 11d 5h 1d 1h 3 446d
i Avoid types too big 40 issues Sd 1h 1d 1h 2943d
1, Avoid types with too many fields 36 issues 7d 5h 6h 51min 329%4d
1. Avoid types with poor cohesion 62 issues 7d Oh 2d 3h 107%d
1. Avoid methods with too many local variables 25 issues 5d 1h 7h 22min 2061d
1 Avoid methods potentially poorly commented 288 issues 2d Oh 7d 2h 104d
1 Avoid methods with too many overloads 499 issues 2d Oh 2d Oh 365d
4 "1 Rulesin: Rules.ndrules \ Object Oriented Desigr 30d 18d 4h 598d
1 Avoid interfaces too big 67 issues 12d 7h 3d 2h 1443d
§ Nuarridas ~f Mathadll shauld ~sll haea Mathad TMiccnse Td Ak 24 Nk a124 ¥
Sum | 19947 | 387d | 236d | 73242
< >

The baseline plays a major role when it comes to exploring the issues set because new or
fixed issues since the baseline assess the quality of recent work.

Per default the baseline is the historic analysis result closest to 30 days ago and per
default, a historic analysis result is persisted at most every day.

Because when assessing recent work quality, one will certainly want to juggle between
yesterday, last week and last month baselines, the CppDepend dashboard allows you to
apply atemporary baseline with a single click. The debt and issues set is then
recomputed within a few seconds accordingly.

© Choose Baseline d ©02d 3d 4d 5d 6d 17d 30d 5&d ged @ 111d any

And since assessing issues and debt since the baseline is important as we just saw, all Hot
Spots default queries come with a since baseline version. For example here is a query to
assess New Debt and Issues per Rule since the baseline.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 14 /19

Queries and Rules Edit - 70 rules matched a x

Issues to FixPriority

"] ‘ View Description | Run on Baseline "% Critical ~ Report: [y % D o IN(7)
Rulesin: Rules.ndrules \Hot Spots 3ms
// <Name>New Debt and Issues per Rule</Name> ~

from r in Rules

where r.IsViolated() & r.IssuesAdded().Count() > @
orderby r.DebtDiff().Value descending

select new {

s

IssuesAdded = r.IssuesAdded(),
IssuesFixed = r.IssuesFixed(),
Issues = r.Issues(),

Debt = r.Debt(),

DebtDiff = r.DebtDif#(),
Category = r.Category

i v
@ & | 0Goupby: % | 58 ExporttoGraph -
70 rules IssuesAdded, IssuesFixed Issues Debt DebtDiff Category A
70 rules maiched
4 0 Rulesin: Rules.ndrules\Code Coverage (/v 141d 141d
§, Code should be tested 501 issues 666issues 6887 issues 1284 -(8d 7h) Rulesin:
1, New Methods should be tested 3issues noissue 32issues 2d Oh 2d Oh Rulesin:
1. Methods refactored should be tested 220 issues noissue 220 issues 2d 1h 2d 1h Rulesin:
8, Types 100% covered should be tagged with Fu 41issues 23issues 552 issues 3d 3h 54min Rulesin :
1 Assemblies Namespaces and Types should be 24 issues 38 issues. 239 issues 1d 7h -(56min) Rulesin :

{ M Types almost 100% tested should be 100% tes| 19issu L 4 issues 73issues | 3h 28min 46min |Rulesin :

1, Types that used to be 100% covered by tests | o
1. Methods should have alow CRAPscore | G B | © Groupby: »# /= £ |4 & D | &
4. Namespaces almost 100% tested should be 10| 15 issues Debt Annual ~
an Eules in: Rules.ndrules \ AP| Breaking Changes Interest
i, AP| Breaking Changes: Methods 5
74, APl Breaking Changes: Fields e
¥4, API Brezking Changes: Types 4 wENHibernate (79 /ssues 367d 217d
74 AP| Brezking Changes: Interfaces and Abstract| 4 {} NHibernate EventDefault /7 /ssue 3d 6h 2d Oh
4 "1 Rulesin: Rules.ndrules \ Naming Conventions 4 %3 Defaultl cadEventListener 1h 28min 59min
1, Static fields naming convention @ Types almost 100% tested should be 10(8min 20min @
1. Avoid fields with name too long 4 {} NHibernate.LoaderHal 7 /ss0e 5h 2min 4h 41min
1 Instance fields naming convention 4 %z Queryloader [/ 5h Smin 4h 21min
1, Avoid methods with name too long @ Types almost Smin 20min @
74 Avoid having different types with same name 4 {} NHibernate Util & 3h 10d 2h
1. Avoid naming types and namespaces vith the 4§ ArrayHelper 4h 33min 1d Oh
3. Avoid prefixing type name with parent namespd @ Types almost 100% tested shouldbe 1~ 4min 505 20min @
1, Abstract base class should be suffixed with ‘Ba| 4 ¢ CollectionPrinter (7 /ssue Bmin 1h 22min
4 "4 Rulesin: Rules.ndrules \ Architecture (7 /s @ Types almost 100% tested shouldbe 1C 2min 0s 20min @
74, Avoid namespaces mutually dependent 4 {} NHibernate Engine Loading (7 /ssues 2h 42min 2h 8min
1 Namespaces with poor cohesion (RelationalCol 4 %3 CollectionLoadContext (7 /ssue, 1h 18min 1h 3min
4 1 Rulesin: Rules.ndrules \ .NET Framework Usag| @ Types almost 100% tested should be 10(6min 20min @

Let's mention a subtlety when it comes to debt and issues querying. Types contain
methods and fields, namespaces contain types and assemblies contain namespaces.
Hence types, namespaces and assemblies are code element parents.

All issues-related ICodeElement extension methods
like elem.Debt(), elem.Annualinterest(), elem.Issues(), have a version prefixed
with All that returns the debt and issues for the code element parent and all its child
elements. Hence:

e elem.Alllssues() returns an enumerable of issues in the code element parent and
issues on its child code elements. Sometime in the product we use the
terminology cumulated issues of a code element parent like an assembly, a
namespace or a type.

e elem.AllDebt() returns the estimated summed debt for the code element parent
and its child code elements.

e elem.AllAnnualinterest() returns the estimated summed annual-interest for the
code element parent and its child code elements.

e elem.AllBreakingPoint() returns the estimated breaking-point for the code
element parent and its child code elements.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 15/19

7.Technical Debt and Quality Gate

You'll find default quality gates relative to technical debt and issues, including Percentage
of Debt, New Debt since Baseline or New Blocker / Critical / Major Issues. Quality gates
relative to absolute technical debt value are disabled by default because the proper
thresholds can only be defined in the context of a particular project.

[| View Description ‘ Run on Baseline "% Critical Report: [y % O
Rulesin: Rules.ndrules \ Quality Gates
// <QualityGate Name="Percentage Debt" Unit="%" />
failif value > 38%
warnif value > 208%
let timeToDev = codeBase.EffortToDevelop()
let debt = Issues.Sum(i => i.Debt)
select 10@d * debt.ToManDay() / timeToDev.ToManDay()

= = ‘ %2 Export to Graph ~
result
1437 %

The same way Issues and Rules are predefined as queryable domains that provide an
enumerable of issues or rules, the domain QualityGatesis an enumerable of quality
gates. The default query below estimates the quality gates trend since the baseline.

Notice that quality gates that rely on the baseline (like New Debt since Baseline) have
neither a value nor a status defined on the baseline.

s
Smart Technical Debt Estimation WhiteBook V CppDepend 16/ 19

8.Reasons why Technical Debt might be Zero or
incomplete

My technical-debt estimation shows zero or ?:

If the technical debt is zero or ?, you are likely analyzing a project created with an older
version of CppDepend (v6 or lower). The rules-set of previous CppDepend versions didn't
have debt formulas, and hence per default issues with no debt formulas have a zero
debt.

In the Dashboard > Debt panel you should see a link named Create a rule-file with default
rules.

Debt
?
The rule-set is outdated and doesnt estimate

the technical-debt. It needs to be updated with
default rules.

I Create a ruleile with default rules I

Clicking this link will automatically create a rule-file that contains all new default rules,
the ones with debt estimation formulas. Once done, it is recommended to replace the
actual project rules with the rules that estimate the technical debt. To do so, drag&drop
can be used from the Queries and Rules Explorer panel (both for rules and for group of
rules). Notice that debt formulas provoque rule compilation errors when read by lower
versions of {0} (v6 and lower). If you plan to use this project from CppDepend v6 or
lower, please clone it first.

For customized rules, we recommend to modify their source code to write custom debt
estimation formulas.

Finally, please note that the default rules file will be created in the same directory than
the project file and will be attached to the project with a relative file path. This path can
be edited from the CppDepend Project Properties > Paths Referenced.

My technical-debt estimation is incomplete because no code coverage
data provided:

Code not tested, or partially tested by unit-tests, represents a large source of technical-
debt. Actually each line of code left uncovered by tests contributes to the technical debt.
This is why the Debt section of the dashboard shows a warning message when code
coverage files import is not setup in the CppDepend project.

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 17 /19

Debt

11.83% © nodff

Rating C 6d 3heffottoreach B
Debt 41d © nodiff

Explore Debt ~

Coverage

Import Code Coverage Data

Code coverage data not available on the baseline:

When code coverage is available in the current analysis result but is not available in the
baseline analysis result, rules related to code coverage don't produce issues. Indeed, in
this situation coverage issues cannot be estimated on baseline and all coverage issues
would then appear as new issues.

Often this situation appears when a project has been created and the first analysis result
obtained doesn't contain coverage data. In the CppDepend project the default baseline
setting is to choose the baseline analysis result closer to obtained 30 days ago, so this
problem might persist for a month.

Typically to fix this situation, we advise to get rid of history analysis result(s) that don't
have code coverage data. To do so you need to open the folder that contains History
Analysis Result defined in CppDepend Project Properties > Analysis > Baseline for
Comparison > Historic Analysis Results (per default set to the project output folder). Then
identify the folder that contains the history analysis result to remove and just delete the
folder.

For example in the screenshot below, the selected folder represents the History Analysis
Result obtained on the 13th of December 2016, 8:59 AM.

> NDependOut > 2016_12 >

~

g Nom Modifié le
06_12_52 06/12/2016 12:52
07_.09_34 07/12/2016 09:34
08_09_21 08/12/2016 09:21
09_10_30 09/12/2016 10:30
101317 10/12/2016 13:17
12_09_39 12/12/2016 09:39
13_08 59 13/12/2016 08:59
14.14_10 14/12/2016 14:10
15.15_39 15/12/2016 15:39
16_09_50 16/12/2016 09:50

-,':g CppDepend

Smart Technical Debt Estimation WhiteBook 18 /19

We understand that this manual folder tweak is not the optimal way to solve such
situation. If you'd like us to provide a Ul that would list History Analysis Results, that
would show which ones doesn't have coverage data (or others flaws like source code not
resolved), and that would let remove them.

We could also provide a filter at analysis time that would not persist an analysis result as
history if it doesn't satisfy certain criteria (like coverage data available...).

s
Smart Technical Debt Estimation WhiteBook V CppDepend 19/19

