
	
	

	

	

	

											
	
	
								

	
CODE	SMELLS	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	

	

			Code	Smells				 	 	2	/	20	

	

Table	of	contents	
1. Avoid	types	too	big	...	4

1.1 Description	...	4

1.2 CQLinq	Query	...	4

1.3 How	to	Fix	Issues	..	5

2. Avoid	types	too	too	many	methods	...	6

2.1 Description	...	6

2.2 CQLinq	Query	...	6

2.3 How	to	Fix	Issues	..	7

3. Avoid	types	with	too	many	fields	...	8

3.1 Description	...	8

3.2 CQLinq	Query	...	8

3.3 How	to	Fix	Issues	..	9

4. Avoid	methods	too	big,	too	complex	...	10

4.1 Description	...	10

4.2 CQLinq	Query	...	10

4.3 How	to	Fix	Issues	..	11

5. Avoid	methods	with	too	many	parameters	...	12

5.1 Description	...	12

5.2 CQLinq	Query	...	12

5.3 How	to	Fix	Issues	..	12

6. Avoid	methods	with	too	many	local	variables	...	13

6.1 Description	...	13

6.2 CQLinq	Query	...	13

6.3 How	to	Fix	Issues	..	13

7. Avoid	types	too	too	many	methods	...	15

7.1 Description	...	15

7.2 CQLinq	Query	...	15

7.3 How	to	Fix	Issues	..	15

8. Avoid	methods	potentially	poorly	commented	...	17

	 	 	

	

			Code	Smells				 	 	3	/	20	

8.1 Description	...	17

8.2 CQLinq	Query	...	17

8.3 How	to	Fix	Issues	..	17

9. Avoid	types	with	poor	cohesion	...	19

9.1 Description	...	19

9.2 CQLinq	Query	...	19

9.3 How	to	Fix	Issues	..	20

	

	 	 	

	

			Code	Smells				 	 	4	/	20	

1. 	Avoid	types	too	big	

1.1 Description	

This	 rule	 matches	 types	 with	 more	 than	 200	 lines	 of	 code.	 Only	 lines	 of	 code	 in	
JustMyCode	methods	are	taken	account.		
	
Types	where	NbLinesOfCode	>	200	are	extremely	complex	to	develop	and	maintain.	
	
See	the	definition	of	the	NbLinesOfCode	metric	here	
http://www.cppdepend.com/Metrics#NbLinesOfCode		
	
Maybe	you	are	 facing	 the	God	Class	 phenomenon:	A	God	Class	 is	 a	 class	 that	 controls	
way	too	many	other	classes	in	the	system	and	has	grown	beyond	all	logic	to	become	The	
Class	That	Does	Everything.	

1.2 CQLinq	Query	

warnif count > 0 from t in JustMyCode.Types where

// First filter on type to optimize
t.NbLinesOfCode > 200

// What matters is the # lines of code in JustMyCode
let locJustMyCode = t.MethodsAndContructors.Where(m => JustMyCode.Contains(m)).Sum(m
=> m.NbLinesOfCode)
where locJustMyCode > 200

let isStaticWithNoMutableState = (t.IsStatic && t.Fields.Any(f => !f.IsImmutable))
let staticFactor = (isStaticWithNoMutableState ? 0.2 : 1)

orderby locJustMyCode descending
select new {
t,
locJustMyCode,
t.Methods,
t.Fields,

Debt = (staticFactor*locJustMyCode.Linear(200, 1, 2000, 10)).ToHours().ToDebt(),

// The annual interest varies linearly from interest for severity major for 300 loc
// to interest for severity critical for 2000 loc
AnnualInterest = staticFactor*(locJustMyCode.Linear(
200, Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
2000,
Severity.Critical.AnnualInterestThreshold().Value.TotalMinutes)).ToMinutes().ToAnnualInt
erest() }

	 	 	

	

			Code	Smells				 	 	5	/	20	

1.3 How	to	Fix	Issues	

Types	with	many	lines	of	code	should	be	split	in	a	group	of	smaller	types.		
	
To	 refactor	 a	 God	 Class	 you'll	 need	 patience,	 and	 you	 might	 even	 need	 to	 recreate	
everything	from	scratch.	Here	are	a	few	refactoring	advices:	
	

• The	 logic	 in	 the	 God	 Class	 must	 be	 splitted	 in	 smaller	 classes.	 These	 smaller	
classes	 can	 eventually	 become	 private	 classes	 nested	 in	 the	 original	 God	 Class,	
whose	instances	objects	become	composed	of	instances	of	smaller	nested	classes.		

• Smaller	 classes	 partitioning	 should	 be	 driven	 by	 the	 multiple	 responsibilities	
handled	by	the	God	Class.	To	identify	these	responsibilities	it	often	helps	to	look	
for	subsets	of	methods	strongly	coupled	with	subsets	of	fields.		

• If	 the	 God	 Class	 contains	way	more	 logic	 than	 states,	 a	 good	 option	 can	 be	 to	
define	 one	 or	 several	 static	 classes	 that	 contains	 no	 static	 field	 but	 only	 pure	
static	methods.	 A	 pure	 static	method	 is	 a	 function	 that	 computes	 a	 result	 only	
from	inputs	parameters,	it	doesn't	read	nor	assign	any	static	or	instance	field.	The	
main	advantage	of	pure	static	methods	is	that	they	are	easily	testable.		

• Try	 to	maintain	 the	 interface	of	 the	God	Class	 at	 first	 and	delegate	 calls	 to	 the	
new	extracted	classes.	In	the	end	the	God	Class	should	be	a	pure	facade	without	
its	own	logic.	Then	you	can	keep	it	for	convenience	or	throw	it	away	and	start	to	
use	the	new	classes	only.		

• Unit	Tests	can	help:	write	tests	for	each	method	before	extracting	it	to	ensure	you	
don't	break	functionality.		

• The	estimated	Debt,	which	means	the	effort	to	fix	such	issue,	varies	linearly	from	
1	hour	for	a	200	lines	of	code	type,	up	to	10	hours	for	a	type	with	2.000	or	more	
lines	of	code.		

• In	Debt	and	 Interest	 computation,	 this	 rule	 takes	account	of	 the	 fact	 that	 static	
types	with	no	mutable	 fields	are	 just	 a	 collection	of	 static	methods	 that	 can	be	
easily	splitted	and	moved	from	one	type	to	another.	

	

	 	 	

	

			Code	Smells				 	 	6	/	20	

2. Avoid	types	too	too	many	methods	

2.1 Description	

This	 rule	 matches	 types	 with	 more	 than	 20	 methods.	 Such	 type	 might	 be	 hard	 to	
understand	and	maintain.		
Notice	 that	 methods	 like	 constructors	 or	 property	 and	 event	 accessors	 are	 not	 taken	
account.		
Having	 many	 methods	 for	 a	 type	 might	 be	 a	 symptom	 of	 too	 many	 responsibilities	
implemented.		
Maybe	 you	are	 facing	 the	God	Class	phenomenon:	A	God	Class	 is	 a	 class	 that	 controls	
way	too	many	other	classes	in	the	system	and	has	grown	beyond	all	logic	to	become	The	
Class	That	Does	Everything.	

2.2 CQLinq	Query	

warnif count > 0 from t in JustMyCode.Types

// Optimization: Fast discard of non-relevant types
where t.Methods.Count() > 20

// Don't match these methods
let methods = t.Methods.Where(
m => !(m.IsGeneratedByCompiler ||
m.IsConstructor || m.IsClassConstructor))

where methods.Count() > 20
orderby methods.Count() descending

let isStaticWithNoMutableState = (t.IsStatic && t.Fields.Any(f => !f.IsImmutable))
let staticFactor = (isStaticWithNoMutableState ? 0.2 : 1)

select new {
t,
nbMethods = methods.Count(),
instanceMethods = methods.Where(m => !m.IsStatic),
staticMethods = methods.Where(m => m.IsStatic),

t.NbLinesOfCode,

Debt = (staticFactor*methods.Count().Linear(20, 1, 200, 10)).ToHours().ToDebt(),

// The annual interest varies linearly from interest for severity major for 30 methods
// to interest for severity critical for 200 methods
AnnualInterest = (staticFactor*methods.Count().Linear(
20, Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,

	 	 	

	

			Code	Smells				 	 	7	/	20	

200,
Severity.Critical.AnnualInterestThreshold().Value.TotalMinutes)).ToMinutes().ToAnnualInt
erest() }

2.3 How	to	Fix	Issues	

To	 refactor	 properly	 a	 God	 Class	 please	 read	 HowToFix	 advices	 from	 the	 default	 rule	
Types	 to	 Big.	 //	 The	 estimated	 Debt,	 which	means	 the	 effort	 to	 fix	 such	 issue,	 varies	
linearly	from	1	hour	for	a	type	with	20	methods,	up	to	10	hours	for	a	type	with	200	or	
more	methods.		
	
In	 Debt	 and	 Interest	 computation,	 this	 rule	 takes	 account	 of	 the	 fact	 that	 static	 types	
with	no	mutable	fields	are	just	a	collection	of	static	methods	that	can	be	easily	splitted	
and	moved	from	one	type	to	another.	

	 	 	

	

			Code	Smells				 	 	8	/	20	

3. Avoid	types	with	too	many	fields	

3.1 Description	

This	rule	matches	types	with	more	than	15	fields.	Such	type	might	be	hard	to	understand	
and	maintain.		
	
Notice	 that	 constant	 fields	 and	 static-readonly	 fields	 are	 not	 counted.	 Enumerations	
types	are	not	counted	also.		
	
Having	 many	 fields	 for	 a	 type	 might	 be	 a	 symptom	 of	 too	 many	 responsibilities	
implemented.	

3.2 CQLinq	Query	

warnif count > 0 from t in JustMyCode.Types

// Optimization: Fast discard of non-relevant types
where !t.IsEnumeration &&
t.Fields.Count() > 15

// Count instance fields and non-constant static fields
let fields = t.Fields.Where(f =>
!f.IsGeneratedByCompiler &&
!(f.IsStatic) &&
JustMyCode.Contains(f))

where fields.Count() > 15

let methodsAssigningFields = fields.SelectMany(f => f.MethodsAssigningMe)

orderby fields.Count() descending
select new {
t,
instanceFields = fields.Where(f => !f.IsStatic),
staticFields = fields.Where(f => f.IsStatic),
methodsAssigningFields ,

Debt = fields.Count().Linear(15, 1, 200, 10).ToHours().ToDebt(),

// The annual interest varies linearly from interest for severity major for 30 methods
// to interest for severity critical for 200 methods
AnnualInterest = fields.Count().Linear(15,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
200,
Severity.Critical.AnnualInterestThreshold().Value.TotalMinutes).ToMinutes().ToAnnualInte
rest() }

	 	 	

	

			Code	Smells				 	 	9	/	20	

	

3.3 How	to	Fix	Issues	

To	refactor	such	type	and	increase	code	quality	and	maintainability,	certainly	you'll	have	
to	group	subsets	of	fields	into	smaller	types	and	dispatch	the	logic	implemented	into	the	
methods	into	these	smaller	types.		
	
More	refactoring	advices	can	be	found	in	the	default	rule	Types	to	Big,	HowToFix	section.		
	
The	estimated	Debt,	which	means	the	effort	to	fix	such	issue,	varies	linearly	from	1	hour	
for	a	type	with	15	fields,	to	up	to	10	hours	for	a	type	with	200	or	more	fields.	

	 	 	

	

			Code	Smells				 	 	10	/	20	

4. Avoid	methods	too	big,	too	complex	

4.1 Description	

This	 rule	 matches	 methods	 where	 ILNestingDepth	 >	 2	 and	 (NbLinesOfCode	 >	 35	 or	
CyclomaticComplexity	>	20	Such	method	is	typically	hard	to	understand	and	maintain.		
	
Maybe	you	are	facing	the	God	Method	phenomenon.	A	"God	Method"	is	a	method	that	
does	way	too	many	processes	 in	the	system	and	has	grown	beyond	all	 logic	to	become	
The	Method	 That	 Does	 Everything.	When	 need	 for	 new	 processes	 increases	 suddenly	
some	programmers	realize:	why	should	I	create	a	new	method	for	each	processe	if	I	can	
only	add	an	if.		
	
See	the	definition	of	the	CyclomaticComplexity	metric	here:	
http://www.cppdepend.com/Metrics#CC	

4.2 CQLinq	Query	

warnif count > 0 from m in JustMyCode.Methods where
(m.NbLinesOfCode > 35 ||
m.CyclomaticComplexity > 20)

let complexityScore = m.NbLinesOfCode/2 + m.CyclomaticComplexity

orderby complexityScore descending,
m.CyclomaticComplexity descending
select new {
m,
m.NbLinesOfCode,
m.CyclomaticComplexity,
complexityScore,

Debt = complexityScore.Linear(30, 40, 400, 8*60).ToMinutes().ToDebt(),

// The annual interest varies linearly from interest for severity minor
// to interest for severity major
AnnualInterest = complexityScore .Linear(30,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
200,
2*(Severity.High.AnnualInterestThreshold().Value.TotalMinutes)).ToMinutes().ToAnnualInte
rest() }

	 	 	

	

			Code	Smells				 	 	11	/	20	

4.3 How	to	Fix	Issues	

A	large	and	complex	method	should	be	split	in	smaller	methods,	or	even	one	or	several	
classes	can	be	created	for	that.		
	
During	 this	 process	 it	 is	 important	 to	 question	 the	 scope	 of	 each	 variable	 local	 to	 the	
method.	This	can	be	an	indication	if	such	local	variable	will	become	an	instance	field	of	
the	newly	created	class(es).		
	
Large	switch…case	structures	might	be	refactored	through	the	help	of	a	set	of	types	that	
implement	 a	 common	 interface,	 the	 interface	 polymorphism	 playing	 the	 role	 of	 the	
switch	cases	tests.		
	
Unit	Tests	can	help:	write	tests	for	each	method	before	extracting	it	to	ensure	you	don't	
break	functionality.		
	
The	estimated	Debt,	which	means	the	effort	to	fix	such	issue,	varies	from	40	minutes	to	8	
hours,	linearly	from	a	weighted	complexity	score.	

	 	 	

	

			Code	Smells				 	 	12	/	20	

5. Avoid	methods	with	too	many	parameters	

5.1 Description	

This	rule	matches	methods	with	more	than	8	parameters.	Such	method	is	painful	to	call	
and	might	 degrade	 performance.	 See	 the	 definition	 of	 the	NbParameters	metric	 here:	
http://www.cppdepend.com/Metrics#NbParameters	

5.2 CQLinq	Query	

warnif count > 0 from m in JustMyCode.Methods where
m.NbParameters >= 7
orderby m.NbParameters descending
select new {
m,
m.NbParameters,

Debt = m.NbParameters.Linear(7, 1, 40, 6).ToHours().ToDebt(),

// The annual interest varies linearly from interest for severity Minor for 7 parameters
// to interest for severity Critical for 40 parameters
AnnualInterest = m.NbParameters.Linear(7,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
40,
Severity.Critical.AnnualInterestThreshold().Value.TotalMinutes).ToMinutes().ToAnnualInte
rest() }

5.3 How	to	Fix	Issues	

More	properties/fields	can	be	added	to	the	declaring	type	to	handle	numerous	states.	An	
alternative	is	to	provide	a	class	or	a	structure	dedicated	to	handle	arguments	passing.		
	
The	estimated	Debt,	which	means	the	effort	to	fix	such	issue,	varies	linearly	from	1	hour	
for	a	method	with	7	parameters,	up	to	6	hours	for	a	method	with	40	or	more	parameters.	

	 	 	

	

			Code	Smells				 	 	13	/	20	

6. Avoid	methods	with	too	many	local	variables	

6.1 Description	

This	rule	matches	methods	with	more	than	15	variables.		
	
Methods	where	NbVariables	>	8	are	hard	to	understand	and	maintain.	Methods	where	
NbVariables	>	15	are	extremely	complex	and	must	be	refactored.		
	
See	 the	 definition	 of	 the	 Nbvariables	 metric	 here:	
http://www.cppdepend.com/Metrics#Nbvariables	

6.2 CQLinq	Query	

warnif count > 0 from m in JustMyCode.Methods where
m.NbVariables > 15
orderby m.NbVariables descending
select new {
m,
m.NbVariables,

Debt = m.NbVariables.Linear(15, 1, 80, 6).ToHours().ToDebt(),

// The annual interest varies linearly from interest for severity Minor for 15 variables
// to interest for severity Critical for 80 variables
AnnualInterest = m.NbVariables.Linear(15,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
80,
Severity.Critical.AnnualInterestThreshold().Value.TotalMinutes).ToMinutes().ToAnnualInte
rest() }

6.3 How	to	Fix	Issues	

To	 refactor	 such	method	and	 increase	 code	quality	 and	maintainability,	 certainly	 you'll	
have	 to	 split	 the	method	 into	 several	 smaller	 methods	 or	 even	 create	 one	 or	 several	
classes	to	implement	the	logic.		
	
During	 this	 process	 it	 is	 important	 to	 question	 the	 scope	 of	 each	 variable	 local	 to	 the	
method.	This	can	be	an	indication	if	such	local	variable	will	become	an	instance	field	of	
the	newly	created	class(es).		
	

	 	 	

	

			Code	Smells				 	 	14	/	20	

The	 estimated	 Debt,	 which	means	 the	 effort	 to	 fix	 such	 issue,	 varies	 linearly	 from	 10	
minutes	 for	a	method	with	15	variables,	up	 to	2	hours	 for	a	methods	with	80	or	more	
variables.	

	 	 	

	

			Code	Smells				 	 	15	/	20	

7. Avoid	types	too	too	many	methods	

7.1 Description	

Method	 overloading	 is	 the	 ability	 to	 create	multiple	methods	 of	 the	 same	 name	with	
different	implementations,	and	various	set	of	parameters.		
	
This	rule	matches	sets	of	methods	with	6	overloads	or	more.		
	
Such	method	 set	 might	 be	 a	 problem	 to	maintain	 and	 provokes	 coupling	 higher	 than	
necessary.		
	
See	the	definition	of	the	NbOverloads	metric	here:	
http://www.cppdepend.com/Metrics#NbOverloads	

7.2 CQLinq	Query	

warnif count > 0 from m in JustMyCode.Methods where
m.NbOverloads >= 6 &&
!m.IsOperator // Don't report operator overload
orderby m.NbOverloads descending
let overloads =
m.IsConstructor ? m.ParentType.Constructors :
m.ParentType.Methods.Where(m1 => m1.SimpleName == m.SimpleName)
select new {
m,
overloads,
Debt = 2.ToMinutes().ToDebt(),
Severity = Severity.Medium }

7.3 How	to	Fix	Issues	

Typically	 the	 too	 many	 overloads	 phenomenon	 appears	 when	 an	 algorithm	 takes	 a	
various	set	of	in-parameters.	Each	overload	is	presented	as	a	facility	to	provide	a	various	
set	 of	 in-parameters.	 In	 such	 situation,	 the	 C#	 and	 VB.NET	 language	 feature	 named	
Named	and	Optional	arguments	should	be	used.		
	
The	 too	many	 overloads	 phenomenon	 can	 also	 be	 a	 consequence	 of	 the	 usage	 of	 the	
visitor	 design	 pattern	 http://en.wikipedia.org/wiki/Visitor_pattern	 since	 a	 method	
named	Visit()	must	be	provided	for	each	sub	type.	In	such	situation	there	is	no	need	for	
fix.		

	 	 	

	

			Code	Smells				 	 	16	/	20	

	
Sometime	 too	 many	 overloads	 phenomenon	 is	 not	 the	 symptom	 of	 a	 problem,	 for	
example	when	 a	 numeric	 to	 something	 conversion	method	 applies	 to	 all	 numeric	 and	
nullable	numeric	types.		
	
The	estimated	Debt,	which	means	the	effort	to	fix	such	issue,	is	of	2	minutes	per	method	
overload.	

	 	 	

	

			Code	Smells				 	 	17	/	20	

8. Avoid	methods	potentially	poorly	commented	

8.1 Description	

This	rule	matches	methods	with	less	than	20%	of	comment	lines	and	that	have	at	least	20	
lines	of	code.	Such	method	might	need	to	be	more	commented.		
	
See	the	definitions	of	the	Comments	metric	here:	
http://www.cppdepend.com/Metrics#PercentageComment	
http://www.cppdepend.com/Metrics#NbLinesOfComment		
	
Notice	 that	 only	 comments	 about	 the	 method	 implementation	 (comments	 in	 method	
body)	are	taken	account.	

8.2 CQLinq	Query	

warnif count > 0 from m in JustMyCode.Methods where
m.PercentageComment < 20 &&
m.NbLinesOfCode > 20

let nbLinesOfCodeNotCommented = m.NbLinesOfCode - m.NbLinesOfComment

orderby nbLinesOfCodeNotCommented descending

select new {
m,
m.PercentageComment,
m.NbLinesOfCode,
m.NbLinesOfComment,
nbLinesOfCodeNotCommented,

Debt = nbLinesOfCodeNotCommented .Linear(20, 2, 200, 20).ToMinutes().ToDebt(),

// The annual interest varies linearly from interest for severity major for 300 loc
// to interest for severity critical for 2000 loc
AnnualInterest = m.PercentageComment.Linear(
0, 8 *(Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes),
20,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes).ToMinutes().ToAnnualIntere
st() }

8.3 How	to	Fix	Issues	

	 	 	

	

			Code	Smells				 	 	18	/	20	

Typically	 add	 more	 comment.	 But	 code	 commenting	 is	 subject	 to	 controversy.	 While	
poorly	written	and	designed	code	would	needs	a	lot	of	comment	to	be	understood,	clean	
code	doesn't	need	that	much	comment,	especially	if	variables	and	methods	are	properly	
named	 and	 convey	 enough	 information.	 Unit-Test	 code	 can	 also	 play	 the	 role	 of	 code	
commenting.		
	
However,	even	when	writing	clean	and	well-tested	code,	one	will	have	to	write	hacks	at	a	
point,	usually	to	circumvent	some	API	limitations	or	bugs.	A	hack	is	a	non-trivial	piece	of	
code,	that	doesn't	make	sense	at	first	glance,	and	that	took	time	and	web	research	to	be	
found.	In	such	situation	comments	must	absolutely	be	used	to	express	the	intention,	the	
need	for	the	hacks	and	the	source	where	the	solution	has	been	found.		
	
The	 estimated	Debt,	which	means	 the	 effort	 to	 comment	 such	method,	 varies	 linearly	
from	2	minutes	for	10	lines	of	code	not	commented,	up	to	20	minutes	for	200	or	more,	
lines	of	code	not	commented.	

	 	 	

	

			Code	Smells				 	 	19	/	20	

9. Avoid	types	with	poor	cohesion	

9.1 Description	

This	 rule	 is	 based	 on	 the	 LCOM	 code	 metric,	 LCOM	 stands	 for	 Lack	 Of	 Cohesion	 of	
Methods.		
hSee	the	definition	of	the	LCOM	metric	here	
	
http://www.cppdepend.com/Metrics#LCOM		
	
The	LCOM	metric	measures	the	fact	that	most	methods	are	using	most	fields.	A	class	is	
considered	utterly	cohesive	(which	is	good)	if	all	its	methods	use	all	its	instance	fields.		
	
Only	types	with	enough	methods	and	fields	are	taken	account	to	avoid	bias.	The	LCOM	
takes	its	values	in	the	range	[0-1].		
	
This	 rule	 matches	 types	 with	 LCOM	 higher	 than	 0.8.	 Such	 value	 generally	 pinpoints	 a	
poorly	cohesive	class.	

9.2 CQLinq	Query	

warnif count > 0 from t in JustMyCode.Types where
t.LCOM > 0.8 &&
t.NbFields > 10 &&
t.NbMethods >10

let poorCohesionScore = 1/(1.01 - t.LCOM)
orderby poorCohesionScore descending

select new {
t,
t.LCOM,
t.NbMethods,
t.NbFields,
poorCohesionScore,

Debt = poorCohesionScore.Linear(5, 5, 50, 4*60).ToMinutes().ToDebt(),

// The annual interest varies linearly from interest for severity Minor for low
poorCohesionScore
// to 4 times interest for severity Major for high poorCohesionScore
AnnualInterest = poorCohesionScore.Linear(5,
Severity.Medium.AnnualInterestThreshold().Value.TotalMinutes,
50,
4*(Severity.High.AnnualInterestThreshold().Value.TotalMinutes)).ToMinutes().ToAnnualInte
rest() }

	 	 	

	

			Code	Smells				 	 	20	/	20	

9.3 How	to	Fix	Issues	

To	 refactor	 a	 poorly	 cohesive	 type	 and	 increase	 code	 quality	 and	 maintainability,	
certainly	you'll	have	to	split	the	type	 into	several	smaller	and	more	cohesive	types	that	
together,	implement	the	same	logic.		
	
The	 estimated	 Debt,	 which	 means	 the	 effort	 to	 fix	 such	 issue,	 varies	 linearly	 from	 5	
minutes	 for	 a	 type	with	 a	 low	 poorCohesionScore,	 up	 to	 4	 hours	 for	 a	 type	with	 high	
poorCohesionScore.	

